
Introduction
This article demonstrates the key

techniques for developing a rule-based
legal expert system. It also introduces the
reader to basic aspects of PROLOG, such
as goal-oriented programming,
backtracking and the interaction between
PROLOG facts and variables.

This article first analyzes the form-
alization of legal rules and the develop-
ment of a logic based decision system
(i.e., an algorithm). It then illustrates how
to develop a legal expert system in
PROLOG (historically a key language for
the development of artificial intelligence
systems) based on the decision system
algorithm, described above.

Formalization of Legal
Rules and the Development
of a Logic Based Decision
System

We first review the formalization of a
simple sentence followed by the formal-
ization of compounded sentences. Next
we look at a logic-based decision system.

The Formalization of
Simples Sentences

According to the canons of
propositional logic, a capital letter can
symbolize any simple English sentence. A
simple sentence, for the purposes of this

discussion, is any English sentence com-
posed of a simple subject and a predicate.
For example: “Laura is a good student”,
“Mary bought a new radio”, etc. We can
symbolize the sentence “John has a TV
set” with the capital letter J. Considered a
logical variable, this capital letter assumes
one of two logical values: one or zero. If
considered true, then its J’s logical value is
one; otherwise, it is false with a logical
value of zero.

The Formalization of
Compounded Sentences

According to the canons of pro-
positional logic, there are six logical
operators: NOT, AND, OR, XOR, the
Conditional Operator and the Biconditional
Operator. These operators are, respectively,
represented by the symbols ~, ·, ∨, ^. ⊃
and ≡ . The sentence “John has not a TV
set”, is represented by ~J. Truth Table 1
defines the truth-value of this
compounded sentence.

Table 1: Truth table for the algebraic
expression ~J

A compounded sentence, for the
purposes of this discussion, is any English
sentence composed of at least one simple
sentence and the logical operator NOT or
any English sentence composed by at least
two simple sentences coordinated by a
logical operator. The sentence "Laura is a
good student and Mary likes to play
tennis", for instance, can be formalized as
L•M, where L stands for "Laura is a good
student", M stands for "Mary likes to play
tennis" and • stands for the logical
operator AND. The truth value of the
algebraic expression L•M is determined
according to Truth Table 2.

Table 2: Truth table for the algebraic
expression L • M.

By the same token, the complex
sentence “John is 13 years old or John is
mentally ill” can be represented by the
algebraic expression O ∨ M, where O
stands for “John is 13 years old”, the
symbol ∨ stands for the logic operator

PC AI 34 17.3

By Francisco Eymael Garcia SchererBy Francisco Eymael Garcia Scherer

Artificial Intelligence and The Law:

How to Develop a Rule-Based Legal
Expert System in Prolog

Artificial Intelligence and The Law:

How to Develop a Rule-Based Legal
Expert System in Prolog

J ~J

1 0

0 1

L M L • M

1 1 1

0 1 0

1 0 0

0 0 0

OR and M stands for “John is mentally
ill”. Table 3 defines the truth-value of this
compounded sentence.

Table 3: Truth table for O v M.

It is important to understand that
the conjunction OR can only be
represented by the symbol ∨ in the
formalization of coordinated sentences
that are not mutually exclusive. It is
perfectly possible that “John is 13 years
old” AND that “John is mentally ill”. On
the other hand, the sentence “Either
George Bush Senior or Bill Clinton was
the President of the US in 1994” cannot
be formalized with the logical operator ∨,
since both hypothesis are mutually
exclusive. This sentence can only be
formalized as G ^ B, where G stands for

“George Bush Senior was the President of
the US in 1994”, B stands for “Bill
Clinton was the President of the US in
1994” and the symbol ^ stands for the
logical operator XOR. Table 4 defines the
truth-value of this compounded sentence.

Table 4: Truth Table for G ^ B.

The sentence “If Mary is a minor,
then Mary is legally incompetent”, can be
symbolized by the algebraic expression
M ⊃ L, where M stands for “Mary is a
minor”, the symbol ⊃ stands for the
conditional operator “if-then” and L
stands for “Mary is legally incompetent”.
In this conditional algebraic expression,
the variable M is the “antecedent”, while
the variable L is the “con-sequent”. Table

5 defines the
truth-value of
this com-
pounded
sentence.

Finally, the
sentence
“Christine will
be allowed to
travel with her
friends if and
only if she
passes the
final exam on
English” has
the algebraic
expression
C ≡ P. Here C
stands for
“Christine will
be allowed to
travel with her
friends”, ≡
stands for the
biconditional
operator “if
and only if ”
and P stands
for “Christine
passed the
final exam on
English”. In
this
biconditional
algebraic

Table 5: Truth Table for M ⊃ L.

expression, the variable P is the
antecedent of the algebraic expression,
while the variable C is the consequent.
Truth Table 6 defines the truth-value of
this compounded sentence.

Table 6: Truth Table for C ≡ P.

The above statements are “truth-
functional”, i.e., the determination of the
logical value of these compounded
sentences rests solely on the truth-value of
the simple sentences from which they are
composed. There are, however, “non-
truth-functional” compounded sentences,
i.e, compounded sentences where the
logical value is not determined solely by
the truth-value of the simple sentences
that compose them. These sentences are
coordinated or joined by “non-truth-
functional” operators such as “X believes
that” (X being any person), “It is
possible that”, “It is necessary that”,
“....because....”, “....after....”. In general,
all of these non-truth-functional operators
relate to concepts of time, possibility and
belief. According to the canons of
propositional logic, we symbolize these
compounded sentences with single capital
letters. For instance, the sentence
“Christine quit her job because she did
not like her boss” is symbolized as C.

The Development of a
Logic-Based System of
Decision

According to the Occupations Code
of the State of Texas, in its Section
2501.001, the term “Personnel Service”
means “a person who, regardless of
whether for a fee, directly or indirectly
offers or attempts to obtain permanent
employment for an applicant or obtains

PC AI 35 17.3

O M O v M
1 1 1

0 1 1

1 0 1

0 0 0

G B G ^ B
1 1 0

0 1 1

1 0 1

0 0 0

M L M ⊃ L
1 1 1

0 1 1

1 0 0

0 0 1

C P C ≡ P

1 1 1

0 1 0

1 0 0

0 0 1

or attempts to obtain a permanent
employee for an employer (...)”.

Section 2501.051, states that: “A
person may not own a personnel service
that operates in this state unless the
person holds a certificate of authority
issued under this chapter”.

And Section 2501.055, finally,
declares that:

“(a) On receipt of a notice filed under
Section 2501.053, the commissioner
shall issue to the owner a certificate of
authority to do business as a personnel
service not later than the 15th day after
the date the notice is filed if the owner:

(1) pays the filing fee required for the
certificate; and
(2) complies with the requirements of
Section 2501.054.

(b) A certificate of authority is valid for
the period set by the Texas Commission
of Licensing and Regulation.”

In this subsection of the article, we
develop a system of analysis and decision
that enables us to analyze any notice filed
under Section 2501.053 and determine
whether the correspondent certificate of
authority should or should not be issued
by the commissioner mentioned in the
Section 2501.055.

And section 2501.053 states that:

(a) Not later than the 30th day before
the date a personnel service begins
operating in this state, the owner of the
service must file notice with the
commissioner.
(b) The notice must include:

(1) the address of each location at
which the personnel service is to
operate its business on a daily basis;
(2) the assumed name, if any, under
which the personnel service will
operate;
(3) the name and residence address of
each owner; and
(4) a statement that each owner has
read and is familiar with this chapter.

(c) The notice must be signed and
sworn to by the owner before a notary
public or other officer authorized to
administer oaths.

The Section 2501.053 can be
interpreted and formalized as follows:

L ≡ (F · A · N · O · R · S)

By definition, the Truth-Value (TV)

The section 2501.054 can be
interpreted and formalized as:

Q ≡ B1 • (B2 • B3 • B4 • (L1 ^ (~
L1)) • V • (D ^ (~D)))

By definition, the Truth-Value of this
algebraic expression is one. Table 8 (page
37) defines the meaning and truth-value
of the variables for this algebraic
expression.

Finally, the Section 2501.055 can be
interpreted and formalized as:

(C • Y • Q) ⊃ I

As in the earlier cases, we define the
truth-value of this algebraic expression to
be one (true). Truth Table 9 defines the
meaning and truth-value of the Variables
for this algebraic expression.

In addition to this rule of conduct, it
is also possible to define a second rule of
conduct - based on the Section under
analysis. We could formalize it as:

(~ C) ∨ (~ Y) ∨ (~ Q) ⊃ (R1 • (~I1))

Again, we define the truth-value of
this algebraic expression as one. Table 10
defines the meaning and truth-value of
R1 and I1.

Finally, we can formalize subsection
(b) of Section 2501.055 as a simple
sentence, V2, which truth value is defined
as one.

PC AI 36 17.3

of this algebraic expression is one. Table 7
defines the meaning and truth-value of
the Variables (V) for this algebraic
expression. U stands for unknown.

Section 2501.054, states that:

“(a) An owner who files a notice under
Section 2501.053 shall file with the
notice a bond in the amount of $5,000
that is:

(1) executed with a good and
sufficient surety;
(2) payable to the state; and
(3) conditioned that the obligor will
not violate this chapter.

(b) In lieu of a bond under Subsection
(a), the owner may deposit $5,000 in
cash.

(c) A bond filed under Subsection (a)
must state that a person aggrieved by a
violation of this chapter by the principal
or an agent or representative of the
principal is entitled to bring an action
on the bond.
(d) An owner of a personnel service may
satisfy the requirements of this section
by filing one bond for the personnel
service, regardless of the number of
locations at which the personnel service
is to operate its business on a daily
basis.”

V Meaning TV

L The notice under analysis was filled according to the Section 2501.053 u

F
The owner of the service filed the notice with the commissioner not later

than the 30th day before the date on which the personnel service will begin
to operate in this state.

u

A The notice includes the address of each location at which the personnel
service is to operate its business on a daily basis. u

N The notice includes the assumed name, if any, under which the personnel
service will operate. u

O The notice includes the name and the address of each owner. u

R The notice includes a statement that each owner has read and is familiar
with this chapter. u

S The notice was signed and sworn to by the owner(s) before a notary public
or other officer authorized to administer oaths. u

Table 7: Meaning and truth value of logical variables.

There are two types of Prolog facts:
simple and complex. The statement above
is an example of a simple Prolog fact. A
complex Prolog fact is composed of a
functor and at least one argument. The
statement “John is a good soccer player”,
can be formalized as:

is_a_good_soccer_player(john).

In this case, the functor is the term
“is_a_good_soccer_player” and the
argument is “john”. To determine who is
a good soccer player, the query would be:

is_a_good_soccer_player(X).

The argument is replaced by a
variable, the first letter of which is always
an upper case letter. The listener searches
the database for a fact that matches the
query, and the variable X is instantiated to
the argument of the fact registered in the
database. In this case, it will produce the
following answer:

X = john.

The system then waits for the next
command. When we press ENTER, the
system finishes the query routine and
generates the answer “yes”. If we press “;”,
the system ignores the first match and
reinitiates the search for another match.

statement “John is a good soccer player”,
for instance, can be coded in Prolog as:

john_is_a_good_soccer_player.

The first letter of a Prolog fact must
be in lower-case. Otherwise, the Prolog
listener (part of the Prolog System) will
interpret the statement as a variable.

After registering
this statement in a
Prolog database, we
will later be able to
recall this same
information through a
query. The Prolog
Listener loads the
database and allows
the entry of the above
statement.

The Listener
interprets this
statement as a
question and it
searches the consulted
database attempting to
find a fact that
matches the query. If
this fact is found, then
the Listener answers
“yes”, as it will in this
case. Otherwise, the
system answers “no”,
which indicates that
the query found no
match. In other words,
a query is a goal,
which either succeeds
(with the answer “yes”)
or fails (with the
answer “no”).

In table 11, we summarize the set of
algebraic expressions described in the
previous paragraphs. Although the
algebraic expression I has not yet been
described, it will be employed in the
decision system that is described next. So,
it was included in table 11 as algebraic
expression E7. This also applies to the
algebraic expression C ≡ L, which was
included in table 11 as algebraic
expression E2.

It is possible to interpret each line of
this table as a node of the decision
system. The system will analyze the truth-
value of the algebraic expression (and its
respective variables) related to the node
one (N1).

Since we previously defined the
truth-value of E1 as one (true), the
system initiates the analysis of node N2
and other nodes until node N6. At this
point, the system analyzes the truth-value
of E7 (which corresponds to the variable
I) and if it is one, then the system starts
the analysis of N7. On the other hand, if
the truth-value of E7 is unknown, then
the system simply finishes the execution
of this algorithm.

The Development of a Legal
Expert System in Prolog

The remainder of this article covers
Prolog facts, Horn Clauses, Backtracking,
Recursion, the Development of a Legal
Expert System and a brief look at the
Prolog Code.

Prolog Facts
A Prolog Fact is a statement that has

been registered in Prolog code. The

PC AI 37 17.3

V Meaning TV

Q The owner of the personnel service complied with the requirements of
the section 2501.054 u

B1 The owner who filed the notice under Section 2501.053 filed with the
notice a bond in the amount of $ 5.000. u

B2 The bond in question is executed with a good and sufficient surety. u

B3 The bond in question is payable to the state. u

B4 The bond in question is conditioned that the obligator will not violate
this chapter. u

L1 The owner deposited $ 5.000 in cash in lieu of the bond. u

V
The bond in question states that a person aggrieved by a violation of this
chapter by the principal or an agent or representative of the principal is
entitled to bring an action on the bond.

u

D The owner of the personnel service filed one bond for each location at
which the personnel service is to operate its business on a daily basis u

Table 8: Meaning and truth value of logical variables.

In this case, the search fails and the system
answers “no”.

We can formalize a Boolean algebraic
expression as a complex Prolog fact. The
algebraic expression A&B, for instance, can
be formalized as &(a,b), in which the
functor & represents the logical operator
AND, with arguments 1 and 2 representing,
the variables A and B, respectively. This is
not, however, a very practical way of
codifying an algebraic expression.

Through the command (or predicate)
op/3, we can declare that the term “&” is an
operator, allowing the programmer to register
the algebraic expression above in the
conventional manner (see Listing 1). We
must register this statement at the top of the
database, so the Listener is able to
acknowledge this statement and apply it to
the algebraic expressions registered in the
lines of code that follow.

This declaration, in Prolog, is coded as:

:-op(597,xfy,&).

The remaining logical operators are
defined in the same manner, allowing the
programmer to register any algebraic
expression in the conventional way.

The algebraic expression E1, for
instance, is coded as follows:

PC AI 38 17.3

V Meaning TV

C The commissioner received a notice filed according to the Section
2501.053. L

Y The owner paid the filing fee required for the certificate. u

Q The owner complied with the requirements of Section 2501.054 u

I
The commissioner shall issue to the owner a certificate of authority to do

business as a personnel service not later than the 15th day after the date
the notice is filed.

u

Table 9: Meaning and truth value of logical variables.

V Meaning TV

R1 The commissioner shall reject the notice under analysis. u

I1 The commissioner shall issue the certificate of authority required by the
owner of the personnel service in question. u

Table 10: Meaning and truth value of logical variables.

En Algebraic Expression

E1 L ≡ (F • A • N • O • R • S)

E2 C ≡ L

E3 Q ≡ B1 • (B2 • B3 • B4 • (L1 ^ (~ L1)) • V • (D ^ (~D)))

E4 (C • Y • Q) ⊃ I

E5 (~ C) ∨ (~ Y) ∨ (~ Q) ⊃ (R1 • (~I1))

E6 V2

E7 I

Table 11: A summary of the set of algebraic expressions
described in the previous paragraphs.

Nn Algebraic
Expression En = 1 En = 0 En = U

N1 E1 N2 - -

N2 E2 N3 - -

N3 E3 N4 - -

N4 E4 N4 - -

N5 E5 N6 - -

N6 E7 N7 - End

N7 E6 End - -

Table 12: A system of decision for the legal expert system.

exp(a1,e1,l<=>(f&a&n&o&r&s)).

As a statement, this Prolog fact
declares that the algebraic expression
corresponds to the algebraic expression
E1 of the decision system A1. The
meaning of variable L can be coded as:

sign(a1,e1,l,” The notice under
analysis was filled according to the
Section 2501.053.”).

And, finally, the truth-value of the
algebraic expression E1 can be registered
as:

valor(a1,e1,l<=>
(f&a&n&o&r&s),truth).

Horn Clauses
From a procedural view-point, a

horn clause is the Prolog equivalent of the
classic IF – THEN command of
conventional languages such as BASIC. It
is composed of a head of clause, the
operator “:-“ and the body of the clause.
The head of the clause is the antecedent
of the horn clause, while the body is the
consequent of the head of the clause.

The following code line, for
instance, in an example of a horn clause:

a:-b.

This declares that if the goal is a,
then the system must search for b. That
is, the goal a will succeed if the system
finds a match for the goal b. Otherwise, it
will fail. Thus b can be defined as a
subgoal of the main goal a.

The body of the clause can be
composed of multiple goals, which can be
either sequential or alternative in nature.
The body of the following horn clause,
for instance, is composed of a sequence of
subgoals:

backtrack again and search for a third
solution for b. This search fails, as there
are no other solutions for this subgoal.
Only after checking all of these options
will the Listener answer no, indicating
that the main goal a failed.

Backtracking is one of the most
useful and tricky features of Prolog, and
the programmer must learn to control it
to develop a functional software in this
language. We can use the predicate once/1
since it establishes that a given goal
cannot be tested again in case of a failure
followed by backtracking. On reviewing
the following code:

a:-once(b),c.

the failure of c automatically results in the
failure of a, since the subgoal b would not
be tested again.

In our legal expert system shell, we
use the predicate once/1 as follows:

node(A,Q,W,S,N):-
once(truth(A,Q,W)),node(A,S);
once(false(A,Q,W)),node(A,N).

Recursion
A recursive clause is a horn clause

that contains at least one subgoal that is
identical to the head of the clause. See the
following horn clause:

truth(A,Q,X):-
atom(X),valor(A,Q,X,truth);

functor(X,&,2),
valor(A,Q,X,truth);

functor(X,&,2),
arg(1,X,B),arg(2,X,C),
once(truth(A,Q,B)),
truth(A,Q,C);

PCAI 39 17.3

a:-b,c,d.

The code line in question is
interpreted as “If the main goal is “a”,
then execute the goal “b”. If b succeeds,
then execute the goal c. If c succeeds,
then execute the goal d. The goal a only
succeeds if and only if the goals b, c and d
succeed.

The body of the following horn
clause is composed of alternative
subgoals:

a:-b;c;d.

This code line is interpreted as “IF
the main goal is a THEN execute the goal
b. If b succeeds, then a also succeeded.
Otherwise, execute c. If c succeeded, then
a also succeeded. Otherwise, execute d. If
d succeeded, then a also succeeded.
Otherwise, a fails.

Backtracking
Let us look at the following lines of

code:

a:-b,c.

b:-b1;b2.

b1.

b2.

Let us assume that our main goal is
a. In this case the subgoal b will suceed
and the subgoal c will fail. The system,
then, will backtrack and retest b. The first
solution for b was b1. The system will
search for a new solution for b, which is
b2. The system will then test c again.
Since c was not declared as a Prolog fact,
this search fails. The listener will

% Define the logical operator NOT
:-op(590,fy,neg).
% Define the logical operator AND
:-op(597,xfy,&).
% Define the selective logical operator AND
:-op(596,xfy,@).
% Define the logical operator OR
:-op(599,xfy,#).
% Define the logical operator XOR
:-op(598,xfy,<>).
% Define the biconditional logical operator
% (If and Only If)
:-op(700,xfy,<=>).
% Define the conditional logical operator
% (If - Then)
:-op(650,xfy,=>).

% These definitions are essential for the
% stand-alone version of the program
:- discontiguous exp/3.
:- discontiguous analise/3.
:- discontiguous sign/4.
:- discontiguous fund/3.
:- dynamic valor/4.
:- discontiguous node/2.

Listing 1: Operators and Definitions

% Legal Rules
exp(a1,e1,l<=>(f&a&(n<>neg(n))&o&r&s)).
sign(a1,e1,l,'The notice under analysis was filled according to the Section 2501.053 of the

Occupations Code of the State of Texas').
sign(a1,e1,f,'The owner of the service filed the notice with the commissioner not later than

the 30th day before the date on which the personnel service will begin to operate in the
State of Texas').

sign(a1,e1,a,'The notice includes the address of each location at which the personnel
service is to operate its business on daily basis').

sign(a1,e1,n,'The notice includes the assumed name, if any, under which the personnel
service will operate').

sign(a1,e1,o,'The notice includes the name and the address of each owner').
sign(a1,e1,r,'The notice includes a statement that each owner has read and is familiar

with this chapter').
sign(a1,e1,s,'The notice was signed and sworn to by the owner(s) before a notary public

or other officer authorized to administer oaths').
valor(a1,e1,l<=>(f&a&(n<>neg(n))&o&r&s),truth).

exp(a1,e2,c<=>l).
valor(a1,e2,c<=>l,truth).
sign(a1,e2,c,'The commissioner received a notice filed according to the Section 2501.053

of the Occupations Code of the State of Texas').

Listing 2: Sample of Legal Rules

This clause declares that a given
algebraic expression X (which
corresponds to the algebraic expression Q
of the decision system A) is considered
true if X is a single variable (i.e., an
“atom”) and if the truth-value of X has
been defined as true in the database.
Alternatively, X will be considered true if
X is an algebraic expression coordinated
by the operator AND (i.e., “&”) and if
the truth-value of X has been defined as

true in the database. Finally, X will also be
considered true if X is an algebraic
expression coordinated by the operator
AND and if both coordinated algebraic
expressions (i.e., “A” and “B”) are
considered true.

The Development of a Legal
Expert System

Based on the theoretical concepts
above, it was possible to develop the

predicates in Table 13. A Prolog predicate
corresponds to a simple or complex Prolog
fact, which may or may not constitute the
head of a horn clause. For the purposes of
this article, we will assume that there are
two types of Prolog predicates: Built-In
predicates and Non-Built-In predicates.
The first type of predicate is already
defined in the structure of the language
and can be used along with the Non-Built-
in predicates (Examples of Built-in
predicates: not/1, write/1, functor/3, etc).
The user of the system defines the second
type of predicate. The predicates listed in
this subsection can be considered Non-
Built-in predicates.

The predicate main/0 is the initial
goal of our legal expert system and it
invokes the first node of the decision
system. After the legal expert system
finishes execution of the algorithm, the
predicate main/0 finishes the execution of
the Prolog code.

The formalized system of decision is
represented by a set of horn clauses. The
head of each clause is a predicate node/2,
while the body of each clause is a predicate
node/4. Predicate node/4 invokes the
predicate analise/3, which invokes
known/3, to determine whether the truth-
value of the algebraic expression indicated
by node/4 can or cannot be deduced based
on the information already registered in
the database. If the truth-value cannot be
determined based on the information
already registered in the database, the
predicate analise/3 invokes input/2 (which
invokes input2/3), to query the user
concerning the truth-value of the algebraic
expression under analysis.

If the algebraic expression under
analysis is a conditional algebraic
expression, analise/3, based on the truth-
value of the antecedent, also invokes either
definet/3 or definef/3 to register the truth-
value of the consequent. In this case,
analise/3 also invokes conclusion/3,
print/3 and justify/3. The predicate
conclusion/3 prints the word
“CONCLUSION”. The predicate print/3
prints the verbal meaning of the
consequent, and, finally, justify/3 indicates
the legal basis of the conclusion generated
by the system.

After the analysis of the algebraic
expression indicated by node/2, the
predicate node/4 invokes the predicate
node/5, which, based on the truth value of
the algebraic expression indicated by
node/4, determines whether to call the
node(A,S) or the node(A,N) (The
node(A,S) is invoked if the truth value of
algebraic expression is one and the

PCAI 40 17.3

% Main

main:-nl,write('IN ORDER TO ANSWER THE QUESTIONS
FORMULATED BY THE SYSTEM, SIMPLY

PRESS T (true) OR F (false) AND PRESS <ENTER>.'),nl,node(a1,n1),
nl,write('Press Any Key to Finalize the Execution of the Program'),nl,read_string(Q).

% Algorithm
node(a1,n1):-node(a1,e1,n2,_).
node(a1,n2):-node(a1,e2,n3,_).
node(a1,n3):-node(a1,e3,n4,_).
node(a1,n4):-node(a1,e4,n5,_).
node(a1,n5):-node(a1,e5,n6,_).
node(a1,n6):-metanode(a1,e7,n7,_,end).
node(a1,n7):-node(a1,e6,end,_).

% The Node System
node(A,Q,S,N):-

exp(A,Q,W),once(analise(A,Q,W)),node(A,Q,W,S,N).
node(A,Q,W,S,N):-

once(truth(A,Q,W)),ncond(A,Q,W),node(A,S);
once(false(A,Q,W)),ncond(A,Q,W),node(A,N).

node(_,end).

% The predicate ncond/3 will generate an output based on the truth value of non-conditional
% algebraic expressions. This predicate always suceeds
ncond(A,Q,W):-
not(functor(W,=>,2)),not(functor(W,<=>,2)),print(A,Q,W),justify(A,Q,W);

true.

Listing 3: Main program and node system.
% The predicate justify/3 indicates the legal basis of a given output generated by the system

jJustify(A,Q,W):-
functor(W,=>,2),arg(2,W,Y),functor(Y,=>,2);
functor(W,=>,2),arg(2,W,Y),functor(Y,<=>,2);
functor(W,<=>,2),arg(1,W,X),functor(X,=>,2);
functor(W,<=>,2),arg(1,W,X),functor(X,<=>,2);
fund(A,Q,O),nl,write('LEGAL BASIS : '),nl,write(O),nl;
true.

% input/3 queries the user about the truth value of X
input(A,Q,X):-once(sign(A,_,X,W)),nl,write('DEFINE THE FOLLOWING STATEMENT AS TRUE

OR FALSE : '),nl,nl,
write(W),write('.'),nl,nl,write('ANSWER : '),read_string(P),input2(A,Q,X,P);
true.

input2(A,Q,X,W):-W=='T',asserta(valor(A,_,X,truth)).
input2(A,Q,X,W):-W=='F',asserta(valor(A,_,X,false)).
input2(A,Q,X,W):-nl,write('The System Will not Accept this Answer'),nl,input(A,Q,X).

% definet/3 defines the truth value of Y as 1
% If the algebraic expression is coordinated by either "-" or "#", then the algebraic expression
% as whole is defined as 1 and the truth value of its respective variables is not defined in
% the database

definet(A,Q,Y):-valor(A,_,Y,truth);
valor(A,_,Y,false),write('CONTRADICTION '),write(Y);
atom(Y),asserta(valor(A,_,Y,truth)).

definet(A,Q,Y):-functor(Y,neg,1),arg(1,Y,X),definef(A,Q,X).
definet(A,Q,Y):-functor(Y,&,2),arg(1,Y,X),definet(A,Q,X),arg(2,Y,Z),definet(A,Q,Z),nl.
definet(A,Q,Y):-functor(Y,@,2),arg(1,Y,X),definet(A,Q,X),arg(2,Y,Z),definet(A,Q,Z),nl.
definet(A,Q,Y):-functor(Y,#,2),asserta(valor(A,Q,Y,truth));

functor(Y,<>,2),asserta(valor(A,Q,Y,truth));
functor(Y,=>,2),asserta(valor(A,Q,Y,truth)),analise(A,Q,Y);
functor(Y,<=>,2),asserta(valor(A,Q,Y,truth)),analise(A,Q,Y).

Listing 4: The predicates justify/3, input/3, input 2/4 and definet/3.

node(A,N) is invoked if the truth value of
the algebraic expression is zero). Before
invoking one of the above nodes,
however, node/5 will invoke ncond/3, to
check whether the algebraic expression
indicated by node/4 is a non-conditional
algebraic expression. In the case where the
result is positive, ncond/3 invokes print/3
to print the verbal meaning of the
algebraic expression, which also invokes
justify/3 to indicate the legal source of the
algebraic expression. Otherwise, ncond/3

simply succeeds and the next node/2 is
invoked by node/5.

As for the predicate metanode/5, this
predicate determines, based solely on
information already registered in the
database, the next node/2 to be called.

It is important to point out that
known/3 is directly linked to truth/3 and
false/3, which means that known/3 will
succeed if and only if the algebraic
expression under analysis is either true or
false. It is also important to point out

that, for procedural reasons, we have
introduced a “selective” AND operator,
which truth value is considered false if the
truth value of the first coordinated
algebraic expression (be it a single variable
or a more complex algebraic expression) is
defined as false by the user. The main
objective of this operator is to avoid the
formulation of senseless questions by the
system, in some cases. Please consult the
complete code for this article.

The Prolog Code
You can access the complete code for

this article at the PC AI website.

Conclusion
In this brief article, we have

demonstrated how to develop a simple
legal expert system in Prolog. Due to the
brief nature of the article, the subject
could not be completely explored. A
second article could be written just to
review the elaboration of a routine for
logical justification. In addition, the
formulation of logical conclusions, based
on incomplete information, could be
explored in a completely different article.
In spite of its conciseness, however, this
article has shown that, based on simple
principles of logic and computer
programming, is it is possible to develop
legal expert systems to be used as auxiliary
tools in the analysis of concrete legal
cases.

Reference
KLENK, Virginia. Understanding

Symbolic Logic. 3rd Edition. Editor:
Prentice Hall, Englewood Cliffs, New
Jersey, USA.

BRATKO, Ivan. Prolog: Programming for

Artificial Intelligence. 2nd Edition.
Editor: Addison-Wesley, Edinburgh Gate,
Harlow, United Kingdom.

AMZI! Prolog User’s Guide and
Reference.

The Occupations Code of the State of
Texas, USA.

Francisco E. G. Scherer was born and
raised in Porto Alegre, Brazil. He
graduated from law school in 2003 and
is currently working at CEF, a state-
owned bank in Brazil. He can be reached
at eymael@yahoo.com or
fancisco.scherer@caixa.gov.br.

PCAI 41 17.3

n Predicates n Predicate

1 exp/3 13 truth/3

2 sign/4 14 false/3

3 valor/4 15 conclusion/3

4 fund/3 16 print/3

5 main/0 17 imppos/3

6 node/2 18 impneg/3

7 node/4 19 justify/3

8 node/5 20 input/3

9 metanode/5 21 input2/3

10 analise/3 22 definet/3

11 ncond/3 23 definef/3

12 known/3

Table 13: Legal Expert System Predicates.

% The predicate conclusion/3 determines whether the expression “conclusion” shall be printer/3.

conclusion(A,Q,Y):-
functor(Y,=>,2);
functor(Y,<=>,2);
nl,write('CONCLUSION : ');
true.

% print/3 determines whether the truth value of W is 1 or 0 and invokes either imppos/3 or
impneg/3

print(A,Q,W):-
truth(A,Q,W),imppos(A,Q,W);
false(A,Q,W),impneg(A,Q,W);
true.

Listing 4: Predicates conclusion/3 and Print/3.

