
J u l y / A u g u s t 2 0 0 1 25

Introduction

K
nowledge bases and logic engines have
existed almost from the beginningof
enterprise computing, and many

developers have classified declarative
languages - such as Prolog - as too scientific
and not appropriate for modern
environments, i.e. the Internet. The
proponents of Prolog - I count myself as one
- try to promote the value of logic bases to
Internet programmers. Sometimes, our
euphoric descriptions of Interactive
Declarative Environments (IDEs) are heard
and gain attention, but usually we earn a
smile from Internet programmers. This
situation has radically changed with the
arrival of logic servers and the possibility to
embed and distribute knowledge bases.

Early attempts to combine logic and
the Internet focused on holding logic
programs between meta-tags within HTML
pages. More recent approaches promote the
use and integration of logic components.
Following this trend, a wrapper is typically
built around traditional Prolog engines,
allowing easy integration and distribution.

One way of combining knowledge
bases with Internet technologies is to access
knowledge bases via the WWW 1. Such
approaches use a gateway to generate queries
and converted the results to HTML before
it delivered. Some years ago, a server-side
logic base, accessed through a query and
implemented via a CGI-script, converted
the results to HTML before it delivered
them back to the client. We call this

centralized approach the integrated logic base.
Hence, other authors argue against this
centralized conception of “intelligence”. By
observing a particular individual, most
opponents to the centralized approach
conclude that knowledge may be duplicated
in many places, and may not be uniformly
accessible.

An alternative - and still less
deployed - method to implement WWW-
logic bases consists of distributing the
logic base itself. Such distributed logic
bases reside within the client
environments (such as an HTML page
running in a Web Browser). This
distributed logic base inspired by the
ability of collective information gathering
approaches and implements the
downsizing and distribution of knowledge.
This reduces, when combined with a
pertinent source and domain model, the
information overload.

We used Amzi’s Logic Server 5.0 Prolog
engine to integrate and distribute a (simple)
logic base within the two dominant
middleware architectures : RMI and
CORBA.

“Good morning!” - A Sample
Application

A very rudimentary Prolog program
illustrates the embedding of the Prolog
engine within the two middleware
architectures. Consider the following code:
period(morning) :- time(Hour,Min,Sec,Hun),

Hour < 12.

period(afternoon) :- time(Hour,Min,Sec,Hun),
Hour >= 12,
Hour =< 18.

period(evening) :- time(Hour,Min,Sec,Hun),
Hour > 18.

The period(X) predicates check the
period of the day and return a “Good
morning!”, “Good afternoon!” or “Good
evening!” respectively. The time/4 predicate
is built-in. Compiling and linking this code
generates the .XPL file loaded by the Logic
Server in the subsequent examples.

Extending Real World Objects with
a Prolog Engine

Recently, more Prolog IDEs have
begun to expose their logic engine through
an Application Programming Interface
(API). The advantage for the programmer is
a simplified embedding of the prolog engine
within traditional development tools (such
as Delphi, C++, VB, Java etc.) We will
concentrate on the JDK 1.3 interface.

The Logic Server is available as a
Java class. The main difference with
Delphi and C++ is that in Java, function
pointers are no longer required. As this
feature is basically used to write extended
predicates and to load them into the
Prolog engine, we will not deal with those
issues here.

A Java application or applet gains
access to the Logic Server by importing
the Amzi package

import amzi.ls.*;

26 P C A I

Access to the Prolog functionality is
then very easy. First, an instance of the Logic
Server is created

LogicServer ls = new LogicServer();

and then, all the methods for effective
Java-Prolog interoperation become available,
such as:
ls.Init(“Period”);
ls.Load(“Period”);
long term = ls.ExecStr(“period(X)”);
System.out.println(“Good
“+ls.GetStrArg(term,1)+”!”);
ls.Close();

The code segment uses the .XPL file
“Period” - a compiled prolog program. The
results of running this application in a
terminal are shown in figure 1.

java PeriodOfDay
Initializing the Logic Server.
Amzi! Prolog + Logic Server, Personal
Edition
Non-Commercial Runtime

Good afternoon!

Figure 1: The Amzi Logic Server
Running in a Java Application (at 5:17
p.m.)

The full source codes of all samples in
this article can be found on our Website
(What is URL). When recompiling the
programs, the amzi.ls.* package must be
in the CLASSPATH. An easy way to
avoid this issue is to copy the complete
amzi subdirectory under the path that
actually contains your .java source files.

Embedding Prolog in CORBA
The Common Object Request Broker

Architecture (CORBA) is a complete
abstraction over low-level network
services. CORBA is based on broker
agents (the ORBs), which provide a rich
set of services (see figure 2):

We now concentrate on the CORBA
Naming service, and we will leave aside all
the other services, although some are of
importance to distributed (Prolog)
programmers - such as the distributed event
service.

In order to use the potential of
CORBA and Prolog, we first need to write
the Logic Server interface in Interface
Definition Language (IDL). A simplified
version of this interface look like this:
interface CORBALogicServer
{
void corbaInitLS(in string xPLName);
void corbaLoadXPL(in string xPLName);
long corbaExecStr(in string aString);
string corbaGetStrArg(in long term, in long
argNum);
void corbaCloseLS();
};

We wrap five Logic Server methods
into the interface. Note that the types in
this IDL declaration are not identical
with the types used in Java. The IDL
syntax precisely allows the designation of
in and out parameters.

This IDL file is now passed to the
idlj compiler, which generates the
CORBA middleware code. Our CORBA
implementation of the Logic Server
extends the idlj - generated class
_CORBALogicServerImplBase:
public class CORBALogicServerImpl extends
_CORBALogicServerImplBase

Initialization and wrapping of the LS
engine methods are straightforward. They
are identical to the pure Java solution
presented above. Its much more interesting
when we create an ORB:
ORB orb = ORB.init(argv, null);

Then we create an instance of the
implementation and register it to the ORB.
The naming service is also called in order to
narrow the context to the freshly created
object. This allows us to register the LS
engine with the CORBA naming service.
CORBALogicServerImpl lsImpl = new
CORBALogicServerImpl();
orb.connect(lsImpl);
org.omg.CORBA.Object dObj = orb.resolve_initial_
references(“NameService”);
NamingContext dRefObj =
NamingContextHelper.narrow(dObj);

Like the Logic Server, the CORBA
Naming Service comes as a package :
import org.omg.CORBA.*;
import org.omg.CosNaming.*;

The CORBA client to the Logic Server
will make use of the idlj - generated classes
CORBALogicServer (the interface) and
CORBALogicServerHelper (the stub). The
initializing CORBA code is almost identical
to the server implementation above, except
two lines, where we resolve the CORBA
path to instantiate our Amzi! Logic Server
Object, and then narrow it to its peer on the
server by means of the CORBA Helper:
org.omg.CORBA.Object serverObject =
cd.resolve(path);
CORBALogicServer ls =
CORBALogicServerHelper.narrow(serverObject);

On the ls instance, we can invoke the
five basic methods that we have wrapped in
the IDL interface. To make this sample
CORBA architecture operational, we need
to run the ORB (Object Request Broker) on
both the client and the server side in order to
establish an IIOP communication between
them. The JDK 1.3 is shipped with a basic
CORBA Naming Service called tnameserv.

tnameserv
Initial Naming Context:
IOR:000000000000002849444c3a6 ...
...01010000000000
TransientNameServer: setting port for
initial object references to: 900
Ready.

Figure 3: The CORBA Naming Service
(tnameserv) Running in a Terminal

The server connects to the CORBA
naming service from within a terminal.Figure 2 : CORBA Services ([Hoque98])

J u l y / A u g u s t 2 0 0 1 27

java CORBALogicServerImpl
Initialisation of the ORB...
Registering a Logic Server with the ORB...
Calling the naming service...
Registering the Logic Server with the
Naming Service
Waiting for clients to connect...

Figure 4: Server Implementation
Connecting to the Naming Service

The client then connects to the
CORBA logic server through the
abstraction provided by the Naming service.

java CORBALogicServerCli
Connecting through the ORB to the Logic
Server ...
Good afternoon!

Figure 5: A CORBA Logic Server Client
Connecting through Localhost at 5:32
p.m.

Embedding Prolog in RMI
Remote Method Invocation (RMI) is

Sun’s middleware architecture for object
distribution. RMI is based on URL
references to distributed objects (figure 6):

The implementation of a RMI Logic
Server is straightforward with the JDK1.3:
first we write an interface, not in IDL as for
the CORBA Logic Server, but directly in
Java. The interface of the simplified RMI
Logic Server looks like this:
import java.rmi.*;
public interface RMILogicServer extends
java.rmi.Remote
{
public void rmiInitLS(String xPLName) throws
java.rmi.RemoteException;
public void rmiLoadXPL(String xPLName) throws
java.rmi.RemoteException;
public long rmiExecStr(String aString) throws
java.rmi.RemoteException;
public String rmiGetStrArg(long term, int argNum)
throws java.rmi.RemoteException;
public void rmiCloseLS() throws

java.rmi.RemoteException;
}

Note that our RMILogicServer class
must extend the java.rmi.remote class, and
that the wrapper methods must throw a
java.rmi.RemoteException.

Then we can write the implementation
of the RMI Logic Server interface. We
basically map incoming method calls to the
original Logic Server methods as in the Java
and CORBA codes above. A private
attribute holds the Logic Server. The
interesting part starts when we create an
instance of the RMI Logic Server and
register it with a unique name in the RMI
registry.
String name = “RMILS”;
RMILogicServerImpl ls = new RMILogicServerImpl();
Naming.rebind(name, ls);

The rest is done by the RMI
architecture. This code must be compiled
first with the javac compiler and then with
the rmic compiler. As for CORBA, the RMI
naming service is part of the JDK1.3 - it’s
called rmiregistry. If this rmiregistry is
running in a terminal (see figure 7), you can
then register the server implementation to
the RMI architecture by running java on
your .class file (see figure 8).

rmiregistry

Figure 7: The RMI Registry Running in
a Terminal

java RMILogicServerImpl
Register RMILogicServerImpl as “RMILS”
RMI Logic Server ready...

Figure 8: The RMI Logic Server
Running in a Terminal

Finally, we have to code the RMI client.
The latter is very close to the pure Java code
segment that we presented earlier in this
article. The essential modifications concern

the RMI-specific referencing of a remote
object (the Logic Server):
String name = “rmi://”+hostAdr+”/RMILS”;
RMILogicServer ls =
(RMILogicServer)Naming.lookup(name);

The interesting part is the lookup of
the RMI Naming service. Note that RMI is
URL-based. This client program will be
compiled with the javac compiler. When
you run it hosted within the appletviewer, it
may look similar to figure 9.

The RMI functionality comes as a
package and is part of the JDK1.3:
import java.rmi.*;

Conclusions
We have demonstrated the embedding

of a Prolog engine within the two major
system-neutral middleware architectures,
CORBA and RMI, and underlined the
potential of logic programming in the
context of the WWW. The best way to take
advantage of the Logic Server would be an
exchange between the Prolog engine and the
host language in both ways – a feature that
is required to program higher level
software agents2.

Thomas Steiner is a professor at the University of
Applied Sciences Valais 3960 Sierre, Switzerland.
thomas.steiner@hevs.ch http://www.netversity.ch

References
1. Steiner T.: “Distributed Software

Agents for WWW-based Destination
Information Systems”, PhD Thesis,
The University of Lausanne, 1999.

2. Steiner T.: “Software Agents for the
Tourism Industry - Prototypes and
Perspectives”, Informatik /
Informatiques 01/2000.

3. Ben-Natan, R.: “ CORBA on the
Web”, McGraw-Hill 1998.

4. Farley, J.: “Java Distributed
Computing”, O’Reilly 1998.

5. Hoque R.: “CORBA3”, IDG Books
1998.

6. McCarty, B. & Cassady-Dorion, L.:
“Java Distributed Objects – The
Authorative Solution”, SAMS 1999.

7. Messerschmitt, D.G: “Understanding
Networked Applications – A first
course”, Morgan-Kaufmann 2000.

8. Ptak, R.L., Morgenthal JP & Forge, S.:
“Manager’s Guide to Distributed
Environments”, John Wiley & Sons
1999.

9. Serain, D.: “Le Middleware – Concepts
et Technologies”, Masson 1997.

10. Steiner T.: “From Objects to Agents - A
bottom-up approach”, to appear.

11. Watson, M.: “Intelligent Java
Applications for the Internet and
Intranets”, Morgan-Kaufmann 1997.

Figure 6 The RMI Architecture

Figure 9: An RMI Logic Server Client
(Applet) connecting through localhost
at 11:39 p.m.

