
Automatic Acquisition of Transfer Rules
from Translation Examples

Werner Winiwarter

Faculty of Computer Science, University of Vienna,
Liebiggasse 4, A-1010 Vienna, Austria,
werner.winiwarter@univie.ac.at,

WWW home page: http://www.ifs.univie.ac.at/~ww/

Abstract. In our research, we have developed a transfer-based machine
translation architecture for the translation from Japanese into German.
One main feature of the system is the fully automatic acquisition of trans-
fer rules from translation examples by using structural matching between
the parsing trees. The translation system has been implemented as part
of a language learning environment with the aim to provide personalized
translations for the students. In this paper we present our formalism to
represent syntactic and transfer knowledge, and explain the various steps
involved in acquiring and applying transfer rules.

1 Introduction

The main aim of our research is the development of a machine translation sys-
tem, which produces high quality translations from Japanese into German. A
second important requirement is full customization of the system because, in
our opinion, there exists no “perfect” translation but only a preferred one for
a certain user. Therefore, the post-editing of a translation should result in an
automatic update of the translation knowledge.

Furthermore, we had to consider the two constraints that we had neither a
large Japanese–German bilingual corpus nor resources to manually build a large
knowledge base available. In any case, a large handcrafted knowledge base is in
conflict with our need for flexible adaptation, and the insufficient data quality of
today’s large corpora interferes with our demand for high quality translations.

In our approach we use a transfer-based machine translation architecture (for
good overviews of this topic see [1–3]). However, we learn all the transfer rules
incrementally from translation examples provided by a user. For the acquisition
of new transfer rules we use structural matching between the parsing trees for a
Japanese–German sentence pair. To produce the input for the acquisition compo-
nent we first compute the correct segmentation and tagging, and then transform
the token lists into parsing trees. For the translation of a sentence, the transfer
component applies the transfer rules to the Japanese parsing tree to transform
it into a corresponding German parsing tree, from which we generate a token
list and surface form. In this paper we focus on the acquisition and transfer
components; for a description of the other system modules we refer to [4].

We have developed the machine translation system as part of PETRA – a
Personal Embedded Translation and Reading Assistant [5]. PETRA is a lan-
guage learning environment, which assists German-speaking language students
in reading and translating Japanese documents, in particular, educational texts.
It is fully embedded into Microsoft Word so that the students can invoke all
the features from within the text editor. The incremental improvement of the
translation quality encourages a bidirectional knowledge transfer between the
student and the learning environment. Besides the translation features, PETRA
offers the access to the large Japanese–German dictionary WaDokuJT and a
user-friendly interface to add new dictionary entries. PETRA has been imple-
mented using Amzi! Prolog, which provides full Unicode support and an API to
Visual Basic for the communication with Microsoft Word.

The rest of the paper is organized as follows. We first introduce our formalism
to represent the parsing trees and transfer rules in Sect. 2 and 3 before we
describe the principal steps for the acquisition and application of the transfer
rules in Sect. 4 and 5.

2 Parsing Trees

The parsing trees represent the input to the acquisition component. Instead of
using a fixed tree structure we decided on a more flexible and robust representa-
tion. We model a sentence as a set of constituents (represented as list in Prolog).
Each constituent is a compound term of arity 1 with the constituent name as
principal functor. Regarding the argument of a constituent we distinguish two
different constituent types: simple constituents representing features or words,
and complex constituents representing phrases as sets of subconstituents.

This representation is compact because empty optional constituents are not
stored explicitly, and is not affected by the order of the different subconstituents
in the arguments of complex constituents. The latter is essential for a robust and
effective application of transfer rules (see Sect. 4). Figure 1 shows an example
of a Japanese parsing tree. The ta-form of the main verb indicates English past
tense, expressed as perfect tense in German.

For the efficient traversal, processing, and manipulation of the arguments
of complex constituents we have implemented several generic predicates. In the
following, we list just those predicates that are used later on in the paper:

– find req(Csub, A,Asub) : searches for subconstituent Csub(Asub) in A, fails
if Csub() /∈ A;

– replace(Csub, A1,Asub, A2) : replaces Csub() ∈ A1 with Csub(Asub) result-
ing in A2; if Csub() /∈ A1, Csub(Asub) is inserted as additional subcon-
stituent;

– repl diff(Csub1,Csub2, A1,Asub, A2) : same as replace except that also the
constituent name is changed to Csub2;

– split(A,A1, A2) : unifies all subconstituents of A1 with the corresponding
subconstituents in A and computes A2 = A \A1 (used for applying transfer
rules with shared variables for unification, see Sect. 3.2).

いまのような形の本は、中世になって、はじめてあらわれた。
Das Buch in seiner heutigen Form ist im Mittelalter zum ersten Mal aufgetreten.
The book in its present form appeared in the Middle Ages for the first time.

[hew (あらわれる/ver), head word – arawareru/verb – to appear
 hwf(vta), head word form – ta-form
 pav(はじめて/adv), predicative adverb – hajimete/adverb – for the first time
 adp([hew (中世/nou), adverbial phrase – head word – chuusei/noun – Middle Ages
 php(になって/par)]), phrase particle – ninatte/particle – in
 sub([hew(本/nou), subject – head word – hon/noun – book
 anp([hew(形/nou), attributive noun phrase – head word – katachi/noun – form
 anp([hew(いま/nou)])])])] attributive noun phrase – head word – ima/noun – present

Fig. 1. Example of Japanese parsing tree

3 Transfer Rules

The transfer rules are stored as facts in the rule base. We have defined several
predicates for the different types of rules. Therefore, when we talk about rules
in the following, we always refer to transfer rules for machine translation in the
general sense, not to logical rules in the strict sense of Prolog.

One characteristic of our transfer rules is that we can cover most translation
problems with a very small number of generic abstract predicates. For some com-
mon problems we have defined some additional specialized predicates. However,
all of these specialized predicates could also be expressed by using our generic
predicates. We introduce them merely to increase the compactness of our rule
base and the efficiency of rule application.

In the next subsections we give an overview of the different rule types along
with illustrative examples. For the ease of the reader we use Roman transcription
for the Japanese examples instead of the original Japanese writing.

3.1 Rules for Translating Simple Constituents

For simple context-insensitive translations at the word level, the argument of a
simple constituent A1 is changed to A2 by the predicate:

tr asc(A1, A2). (1)

Example 1. The default transfer rule to translate the Japanese noun hon (book)
into the German counterpart Buch is stated as the fact:

tr asc(hon/nou, ’Buch’/nou).

This general fact is then supplemented with more specific context-sensitive
facts to handle different word meanings in other contexts. We have included the
word category in the fact specification so that we can easily model the situation
where a translation changes the word category.

Example 2. The Japanese adjectival noun onaji (same) is translated into the
German adjective gleich:

tr asc(onaji/ano, gleich/adj).

More complex changes that also affect the constituent itself can be defined
by using the predicate:

tr sc(C1, C2, A1, A2). (2)

A fact for this predicate changes a simple constituent C1(A1) to C2(A2), i.e.
constituent name and argument are replaced.

Example 3. The Japanese attributive suffix (asf) dake (only) is expressed as
attributive adverb (aav) nur in German:

tr sc(asf, aav,dake/suf, nur/adv).

This predicate can also be used in situations where a Japanese word is just
expressed as syntactic feature in German.

Example 4. The Japanese attributive adverb mottomo (most) corresponds to
the superlative degree of comparison (com) of an adjective in German:

tr sc(aav, com,mottomo/adv, sup).

The second constituent C2 is not restricted to a simple constituent, it can
also be a complex constituent. This way we can model translations of simple
words into whole phrases.

Example 5. The Japanese predicative adverb hajimete (for the first time)
is translated into the German adverbial phrase zum ersten Mal:

tr sc(pav, adp,hajimete/adv,
[php(zu/prp), det(def), num(sng), seq(erst/ord), hew(’Mal’/nou)]).

The adverbial phrase is specified as set of five subconstituents: phrase particle
zu/preposition, determiner type definite, number singular, sequence erst/ordinal
numeral, and head word Mal/noun. Please note that zum is a contraction of the
preposition zu and the definite article dem for the dative case.

Finally, for modelling situations where there exist different translations for a
Japanese word depending on the constituent name, we also provide a shortcut
for tr sc(C,C,A1, A2):

tr scn(C,A1, A2). (3)

3.2 Rules for Translating Complex Constituents

Just as in the case of simple constituents, the following predicate enables the
substitution of arguments for complex constituents:

tr acc(Hew, Req1, Req2). (4)

Facts for this predicate change the argument of a complex constituent from
A1 = Req1 ∪ Add to A2 = Req2 ∪ Add if hew(Hew) ∈ A1. The head word Hew
serves as index for the fast retrieval of matching facts and the reduction of the
number of facts that have to be further analyzed. The application of a transfer
rule requires that the set of subconstituents in Req1 is included in an input
constituent to replace Req1 by Req2. Besides Req1 any additional constituents
can be included in the input, which are transferred to the output unchanged.
This allows for a flexible and robust realization of the transfer module (see
Sect. 5) because one rule application changes only certain aspects of a constituent
whereas other aspects are translated by other rules in subsequent steps.

Example 6. The Japanese adverbial phrase chuusei ninatte (in the Middle
Ages) is translated into the German adverbial phrase im Mittelalter:

tr acc(chuusei/nou, [php(ninatte/par), hew(chuusei/nou)] ,
[php(in/prp), det(def), num(sng), hew(’Mittelalter’/nou)]).

Because A1 and Req1 are sets of constituents, the order of the subconstituents
must not influence the matching of the two sets. Therefore, by applying the
predicate split (see Sect. 2) we retrieve each element of Req1 in A1 to create a
list of constituents Req1s in the same order as in Req1 and then try to unify
the two lists. As a byproduct of this sorting process we obtain the set difference
Add = A1 \ Req1 as all remaining constituents in A1 that were not retrieved.

Example 7. The expression ji o kaku (literally to write characters) in the
Japanese verb phrase katamen ni ji o kaku (to write on one side) is re-
placed by the verb beschreiben within the corresponding German verb phrase:

tr acc(kaku/ver, [hew(kaku/ver), dob([hew(ji/nou)])], [hew(beschreiben/ver)]).
A1 = [dob([hew(ji/nou)]), hwf(vdi), hew(kaku/ver),

adp([php(ni/par), hew(katamen/nou)])]
Req1s = [hew(kaku/ver), dob([hew(ji/nou)])]
Add = [hwf(vdi), adp([php(ni/par), hew(katamen/nou)])]
A2 = [hew(beschreiben/ver), hwf(vdi), [adp([php(ni/par), hew(katamen/nou)])]

The rule specifies that for any complex constituent with head word kaku and
direct object (dob) ji these two subconstituents are replaced by the head word
beschreiben. In this example the input A1 for the application of this rule is a
verb phrase with direct object ji, head word form vdi (verb dictionary form),
head word kaku, and adverbial phrase katamen ni. Req1s is extracted from
A1 in the correct order, leaving Add as list of remaining subconstituents. The
result A2 is then formed by appending the list Add to Req2.

The expressiveness of this formalism is increased decisively by using shared
variables for unification within the facts. This makes it possible to change certain
parts of subconstituents and leave other parts intact. It also allows to define
general rules that can be overwritten by more specific rules.

Example 8. The following rule states that a verb phrase with head word tsuna-
giawaseru and any direct object X (to put together from X) is translated
into a verb phrase with head word zusammenfügen and the prepositional object
consisting of the phrase particle aus (from), number plural, determiner type
indefinite, and X:

tr acc(tsunagiawaseru/ver, [hew(tsunagiawaseru/ver), dob(X)],
[hew(zusammenfügen/ver), pob([php(aus/prp), det(ind), num(plu)|X]).

If this transfer rule is applied to the verb phrase papirusu o nanmai mo tsuna-
giawaseta (put together from several sheets of papyrus), we obtain:

Req1 = [hew(tsunagiawaseru/ver), dob(X)]
Req2 = [hew(zusammenfügen/ver), pob([php(aus/prp), det(ind),num(plu)|X]
A1 = [dob([hew(papirusu/nou), qua([hew(mai/cou), php(mo/par),

amo(nan/ipr)])]), hwf(vta), hew(tsunagiawaseru/ver)]
Req1s = [hew(tsunagiawaseru/ver), dob([hew(papirusu/nou),

qua([hew(mai/cou), php(mo/par), amo(nan/ipr)])])]
Add = [hwf(vta)]
A2 = [hew(zusammenfügen/ver), pob([php(aus/prp), det(ind),num(plu),

hew(papirusu/nou), qua([hew(mai/cou), php(mo/par), amo(nan/ipr)])]),
hwf(vta)]

As can be seen, the variable X is bound to the head word papirusu and the com-
plex constituent qua expressing a quantity. The quantity expression (several
sheets) consists of the head word mai (counter for thin objects like sheets), the
phrase particle mo (also), and the interrogative pronoun (ipr) nan (what).

One important use of this predicate is the translation of Japanese postpo-
sitional objects into corresponding German prepositional objects because the
choice of the German preposition depends in most cases on the main verb and
the postposition.

As for the case of a simple constituent, we also provide a predicate to not only
change the argument of a complex constituent but also the constituent name:

tr cc(C1, C2,Hew, Req1, Req2). (5)

This changes a complex constituent C1(A1) to C2(A2). A1 is defined as union
of a set of required subconstituents Req1 and a set of optional subconstituents
Opt: A1 = Req1 ∪ Opt. A2 is then computed as union of the translation Req2
of the required subconstituents and Opt: A2 = Req2 ∪ Opt. Again, Hew is used
to speed up the rule access. Different from the unrestricted set Add in (4), Opt
is limited to certain optional constituents, which do not change the translation
of the rest of the phrase.

Example 9. The adverbial phrase katamen ni (on one side) introduced in
Example 7 is translated as predicative adjectival phrase (pap) with head word
einseitig and comparison positive. An additional attributive suffix dake (only)
as in katamen dake ni is transferred unchanged to be translated in a second
step as shown in Example 3:

tr cc(adp, pap,katamen/nou, [php(ni/par), hew(katamen/nou)],
[hew(einseitig/adj), com(pos)]).

A1 = [php(ni/par), hew(katamen/nou), asf(dake/suf)]
Req1s = [php(ni/par), hew(katamen/nou)]
Opt = [asf(dake/suf)]
A2 = [hew(einseitig/adj), com(pos), asf(dake/suf)]

Of course, also facts for predicate (5) can contain shared variables for unifi-
cation to enable the acquisition of general transfer rules.

Example 10. The Japanese adjectival noun nita together with a comparative
phrase (cmp) X forms an attributive adjectival phrase (aap) (being similar
to X) that is translated into a relative clause (rcl) with head word ähneln (to
resemble) in present tense and an indirect object (iob) X:

tr cc(aap, rcl,nita/ano, [hew(nita/ano), cmp(X)],
[hew(ähneln/ver), ten(prs), iob(X)].

3.3 Rules for Translating Conjunctions

German (or English) conjunctions are expressed in Japanese mainly with the
help of conjunctive particles. However, the translation of a conjunctive particle
often depends on the constituent name of the complex constituent in which it is
included, i.e. the phrase type.

Therefore, we provide the following predicate for the definition of general
transfer rules for situations where the argument A1 of a simple constituent is
only translated to A2 if the constituent name of the complex constituent in which
it is included equals CI :

tr sci(CI, A1, A2). (6)

Example 11. The default transfer rule to translate the Japanese conjunctive par-
ticle to (and) for combining a noun phrase with a coordinated noun phrase (cnp)
is formulated as the fact:

tr sci(cnp,to/par, und/con).

However, when to is used to combine a clause with a preceding clause (pcl), the
meaning changes to the conditional sense wenn (if, when):

tr sci(pcl,to/par, wenn/con).

One particular characteristic of Japanese grammar is that there exist certain
verb forms with conjunctional meaning to combine two clauses, e.g. the te-form.
For this frequent situation we have defined the following predicate, which chooses
a conjunction to insert into the preceding clause depending on the verb form and
the head words of the two clauses:

tr cvf(Vf,Hew1,Hew2,Con). (7)

This predicate is just provided for reasons of convenience and efficiency, it can
also be realized with the help of predicate (4) applied to the main clause:

tr acc(Hew2, [hew(Hew2), pcl([hew(Hew1), hwf(Vf)|X])],
[hew(Hew2), pcl([hew(Hew1), hwf(Vf), php(Con)|X])]).

3.4 Rules for Translating Syntactic Features

One of the main problems with translating Japanese into German is the large
discrepancy between these two languages with respect to their explicitness in ex-
pressing syntactic features at the surface level. German grammar has a complex
system of declensions and conjugations to express number, gender, case, tense,
mood, voice, etc. Japanese, however, is highly ambiguous regarding most of these
features: it has no declension at all, does not distinguish between singular and
plural, has no articles, and indicates only two tenses through conjugation. To
bridge these two very different representations of linguistic knowledge, we have
to find the right values for all the syntactic features required for the generation
of the surface form of a German sentence.

Maybe the most difficult problem is to determine the referential properties of
a Japanese noun phrase in order to generate the correct values for the syntactic
features number and determiner type. In our translation model we use default
values wherever possible, which are overwritten to cover special cases. To model
the general situation that the determiner type and the number of a constituent
with name C depend on its head word and on the head word of the constituent
in which it is included, we provide the predicate:

tr dn(C,Hew1,Hew2,Det,Num). (8)

Example 12. In the expression himo o toosu (to thread a lace) the direct
object is an indefinite singular noun phrase:

tr dn(dob,himo/nou,toosu/ver, ind, sng).

As before, this rule is only a shortcut instead of writing:

tr acc(Hew2, [hew(Hew2), C([hew(Hew1)|X])],
[hew(Hew2), C([hew(Hew1), def(Det),num(Num)|X])]).

Rules of this type can again be overwritten by more specific rules. This way
we can create a flexible hierarchy of rules reaching from the most general to the

most specific cases. For postpositional phrases the correct number and tense is
determined in parallel with the translation of the postposition whenever possible.

Syntactic features regarding verbs in verb phrases, i.e. the correct tense,
voice, mood, etc., are mainly derived from the verb form. For this purpose we
provide a predicate to translate a verb form into a list of syntactic features:

tr vff(Vf,FL). (9)

Except for the tense we use default values for the syntactic features and indicate
only different values to keep the German parsing tree compact. As the informa-
tion derived from the conjugation of the main verb is often ambiguous, in many
cases the acquisition of additional, more specific rules is necessary.

4 Acquisition of Transfer Rules

For the automatic acquisition of new transfer rules from Japanese–German sen-
tence pairs, we first compute both parsing trees as input to the acquisition
component. The acquisition algorithm traverses both syntax trees in a top-down
fashion. We start the search for new rules at the sentence level before we look for
corresponding subconstituents to continue the search for finer-grained transfer
rules recursively. The matching algorithm performs a complete traversal of the
parsing trees, i.e. rules are learnt even if they are not needed for the translation
of the Japanese sentence in order to extract as much information as possible
from the example.

In addition to the predicates we have already described in Sect. 2 we use
the predicate find opt par(Csub, A1, A2,Asub1,Asub2) to search for the subcon-
stituent with name Csub in A1 and A2, and retrieve the arguments of Csub(Asub1)
and Csub(Asub2); Asub1=nil if Csub() /∈ A1, Asub2=nil if Csub() /∈ A2.

In the following we give an overview of the steps we perform to match between
complex constituents. Because of space limitations, we can only present the basic
principles for the most common cases. To match between two verb phrases we:

– derive a transfer rule of type tr asc for the main verb;
– derive a transfer rule of type tr acc for subconstituents of which the trans-

lation depends on the main verb, e.g. to map a postpositional object to
a prepositional object, and continue the matching recursively for the two
subconstituents without adpositions;

– derive transfer rules of type tr cc or tr sc to map Japanese subconstituents
to different German subconstituents (e.g. a predicative adverb to an adver-
bial phrase, an adverbial phrase to a predicative adjectival phrase, etc.); if
possible, matching is continued recursively for the congruent parts of the
two subconstituents;

– apply find opt par to search for corresponding subconstituents for subject,
direct object, preceding clause, etc., and apply matching recursively to these
subconstituents;

– derive transfer rules for conjunctions and syntactic features.

To match between two adverbial phrases we derive a transfer rule of type
tr acc to translate the postposition and continue matching recursively for both
phrases without adpositions. Finally, to match between two noun phrases we:

– derive either a default transfer rule of type tr asc for the head noun or a
transfer rule of type tr acc for specific translations of head/modifier combi-
nations (e.g. head noun and attributive noun phrase);

– derive transfer rules of type tr cc or tr sc to map Japanese subconstituents
to different German subconstituents (e.g. an attributive adjectival phrase to
a relative clause); if possible, matching is continued recursively;

– apply find opt par to search for corresponding subconstituents for attribu-
tive verb phrase, attributive adjectival phrase, coordinated noun phrase, etc.,
and apply matching recursively to these subconstituents;

– derive transfer rules for conjunctions and syntactic features.

Each rule which is not already in the rule base is validated against the existing
rules to resolve any conflicts resulting from adding the new rule. This resolution is
achieved by making general rules more specific. The distinction between general
rules for default situations and specific rules for exceptions is drawn according
to the frequency of occurrence in the collection of sentence pairs translated in
the past. This way we are independent from the chronological order of analyzing
new examples, i.e. the rule acquisition is not affected if an exception is learnt
before a general case. Figure 2 shows the rules that are learnt from the German
translation of the Japanese sentence in Fig. 1 (the syntactic features for the
subject correspond with the default values so that no new rule is derived).

5 Application of Transfer Rules

The transfer component traverses the Japanese syntax tree in a top-down fash-
ion and searches for transfer rules to be applied. We always check first whether
the conditions for more specific transfer rules are satisfied before applying more
general rules. As explained in Sect. 3 transfer rules can also perform only partial
translations of complex constituents, leaving some parts unchanged to be trans-
formed later on. This flexible and robust approach requires that the transfer
component is able to deal with parsing trees that contain mixed representations
consisting of original Japanese parts, and German parts that were already trans-
lated. This mixture gradually turns into a fully translated German parsing tree.
Figure 3 shows the application of the transfer rules from Fig. 2.

As in Sect. 4, we can only highlight the basic principles of the transfer al-
gorithm. By making use of the generic predicates to manipulate complex con-
stituents (see Sect. 2) we have defined the predicate tf arg(C,A1, A2) to translate
the argument A1 of a constituent C(A1) into A2. For simple constituents this
involves just the application of rules of type tr asc, for complex constituents
we perform the following principal steps: find and apply transfer rules of type
tr acc, transfer rules of type tr asc for the head word, and transfer rules for con-
junctions and syntactic features; recursively call predicates for the translation of
all subconstituents.

[hew(あらわれる/ver), hwf(vta),
 pav(はじめて/adv),
 adp([hew(中世/nou),
 php(になって/par)]),
 sub([hew(本/nou),
 anp([hew(形/nou),
 anp([hew(いま/nou)])])])]

[hew(auftreten/ver), ten(per),
 adp([hew('Mal'/nou), php(zu/prp),
 det(def), num(sng), seq(erst/ord)]),
 adp([hew('Mittelalter'/nou), php(in/prp),
 det(def), num(sng)]),
 sub([hew('Buch'/nou), det(def), num(sng),
 app([hew('Form'/nou), php(in/prp),
 det(psv), num(sng),
 aap([hew(heutig/adj), com(pos)])])])]

1. Structural matching between verb phrases
 tr_asc(あらわれる/ver, auftreten/ver).
 tr_sc(pav, adp, はじめて/adv, [php(zu/prp), det(def), seq(erst/ord), num(sng), hew('Mal'/nou)]).
 tr_vff(vta, [ten(per)]).
 2. Structural matching between adverbial phrases
 tr_acc(中世/nou, [php(になって/par), hew(中世/nou)],
 [php(in/prp), det(ind), num(sng), hew('Mittelalter'/nou)]).
 3. Structural matching between noun phrases
 tr_asc(中世/nou, 'Mittelalter'/nou).
 4. Structural matching between noun phrases
 tr_asc(本/nou, 'Buch'/nou).
 tr_cc(anp, app, 形/nou, [hew(形/nou), anp([hew(いま/nou)])],
 [php(in/prp), det(psv), num(sng), hew('Form'/nou), aap([com(pos), hew(heutig/adj)])]).
 5. Structural matching between noun phrases
 tr_asc(形/nou, 'Form'/nou).
 tr_cc(anp, aap, いま/nou, [hew(いま/nou)], [com(pos), hew(heutig/adj)]).

Fig. 2. Example of rule acquisition

The predicate tf acc(A1, A2) is used for finding and applying transfer rules of
type tr acc; if no transfer rule can be applied, the constituent is left unchanged:

tf acc(A1, A2):-find req(hew, A1,Hew), tr acc(Hew,Req1,Req2),
split(A1,Req1,Add), append(Req2,Add, A2).

tf acc(A,A).

The recursive call for translating a subconstituent Csub(Asub) is realized with
the predicate tf sub(Csub, A1, A2):

tf sub(Csub, A1, A2):-find req(Csub, A1,Asub), tf sub arg(Csub,Asub, A1, A2).
tf sub(, A,A).

and the predicate tf sub arg(Csub,Asub, A1, A2), which consists of several rules
that either:

– find and apply a rule of type tr sc: tf sub arg(Csub,Asub, A1, A2):-
tr sc(Csub,Csub2,Asub,Asub2), repl diff(Csub,Csub2, A1,Asub2, A2).

– find and apply rules of type tr cc (tf cc is defined in a similar way to tf acc):
tf sub arg(Csub,Asub, A1, A2):-tf cc(Csub,Csub2,Asub,Asub2),
repl diff(Csub,Csub2, A1,Asub2, A2).

– recursively call tf arg for translating Asub: tf sub arg(Csub,Asub, A1, A2):-
tf arg(Csub,Asub,Asub2), Asub \== Asub2, replace(Csub, A1,Asub2, A2).

– otherwise leave the constituent unchanged: tf sub arg(, , A,A).

 [hew(あらわれる/ver), hwf(vta), pav(はじめて/adv), adp([hew(中世/nou), php(になって/par)]),
 sub([hew(本/nou), anp([hew(形/nou), anp([hew(いま/nou)])])])]
1. tr_asc(あらわれる/ver, auftreten/ver).
 [hew(auftreten/ver), hwf(vta), pav(はじめて/adv), adp([hew(中世/nou), php(になって/par)]),
 sub([hew(本/nou), anp([hew(形/nou), anp([hew(いま/nou)])])])]
2. tr_vff(vta, [ten(per)]).
 [hew(auftreten/ver), ten(per), pav(はじめて/adv), adp([hew(中世/nou), php(になって/par)]),
 sub([hew(本/nou), anp([hew(形/nou), anp([hew(いま/nou)])])])]
3. tr_sc(pav, adp, はじめて/adv, [php(zu/prp), det(def), seq(erst/ord), num(sng), hew('Mal'/nou)]).
 [hew(auftreten/ver), ten(per), adp([php(zu/prp), det(def), seq(erst/ord), num(sng), hew('Mal'/nou)]),
 adp([hew(中世/nou), php(になって/par)]), sub([hew(本/nou), anp([hew(形/nou), anp([hew(いま/nou)])])])]
4. tr_acc(中世/nou, [php(になって/par), hew(中世/nou)], [php(in/prp), det(ind), num(sng), hew('Mittelalter'/nou)]).
 [hew(auftreten/ver), ten(per), adp([php(zu/prp), det(def), seq(erst/ord), num(sng), hew('Mal'/nou)]),
 adp([php(in/prp), det(ind), num(sng), hew('Mittelalter'/nou)]),
 sub([hew(本/nou), anp([hew(形/nou), anp([hew(いま/nou)])])])]
5. tr_asc(本/nou,'Buch'/nou).
 [hew(auftreten/ver), ten(per), adp([php(zu/prp), det(def), seq(erst/ord), num(sng), hew('Mal'/nou)]),
 adp([php(in/prp), det(ind), num(sng), hew('Mittelalter'/nou)]),
 sub([hew('Buch'/nou), det(def), num(sng), anp([hew(形/nou), anp([hew(いま/nou)])])])]
6. tr_cc(anp, app, 形/nou, [hew(形/nou), anp([hew(いま/nou)])],
 [php(in/prp), det(psv), num(sng), hew('Form'/nou), aap([com(pos), hew(heutig/adj)])]).
 [hew(auftreten/ver), ten(per), adp([php(zu/prp), det(def), seq(erst/ord), num(sng), hew('Mal'/nou)]),
 adp([php(in/prp), det(ind), num(sng), hew('Mittelalter'/nou)]),
 sub([hew('Buch'/nou), det(def), num(sng), app([php(in/prp), det(psv), num(sng), hew('Form'/nou),
 aap([hew(com(pos), heutig/adj)])])])]

Fig. 3. Example of rule applications

6 Conclusion

In this paper we have presented a machine translation system, which automati-
cally learns transfer rules from translation examples by using structural matching
between parsing trees. We have completed the implementation of the system and
are now in the process of creating a rule base of reasonable size with the assis-
tance of several language students from our university. So far, their feedback
regarding the usefulness of PETRA for their language studies has been very
positive. After we have reached a certain level of linguistic coverage, future work
will concentrate on a thorough evaluation of our system.

References

1. Hutchins, J., Somers, H.: An Introduction to Machine Translation. Academic Press
(1992)

2. Newton, J., ed.: Computers in Translation: A Practical Appraisal. Routledge (1992)
3. Somers, H., ed.: Computers and Translation: A Translator’s Guide. John Benjamins

(2003)
4. Winiwarter, W.: Incremental learning of transfer rules for customized machine

translation. Proc. of the 15th Intl. Conf. on Applications of Declarative Program-
ming and Knowledge Management, Berlin, Germany (2004) 183–192

5. Winiwarter, W.: PETRA – the personal embedded translation and reading assis-
tant. Proc. of the InSTIL/ICALL 2004 Symposium on NLP and Speech Technolo-
gies in Advanced Language Learning Systems, Venice, Italy (2004) 111–114

