
Incremental Learning of Transfer Rules
for Customized Machine Translation

Werner Winiwarter

Faculty of Computer Science,
University of Vienna, Liebiggasse 4, A-1010 Vienna, Austria,

werner.winiwarter@univie.ac.at,
WWW home page: http://www.ifs.univie.ac.at/~ww/

Abstract. In this paper we present a machine translation system, which
translates Japanese into German. We have developed a transfer-based
architecture in which the transfer rules are learnt incrementally from
translation examples provided by a user. This means that there are no
handcrafted rules, but, on the contrary, the user can customize the sys-
tem according to his own preferences. The translation system has been
implemented by using Amzi! Prolog. This programming environment had
the big advantage of offering sufficient scalability even for large lexicons
and rule bases, powerful unification operations for the application of
transfer rules, and full Unicode support for Japanese characters. Finally,
the application programming interface to Visual Basic made it possible
to design an embedded translation environment so that the user can use
Microsoft Word to work with the Japanese text and invoke the trans-
lation features directly from within the text editor. We have integrated
the machine translation system into a language learning environment
for German-speaking language students to create a Personal Embedded
Translation and Reading Assistant (PETRA).

1 Introduction

For language students and other people interested in Japanese documents, the
Web makes available a wealth of information. In general, after reaching a cer-
tain level of linguistic competence in a foreign language, the reading of written
material represents an excellent way to improve the fluency by learning new ter-
minology or grammatical structures in their natural context with comparatively
little effort.

However, this approach to language acquisition, which works so well with
many languages, is seriously hampered by the complexity of the Japanese writ-
ing system. Japanese texts are a mixture of the two syllabaries hiragana and
katakana as well as the Japanese versions of Chinese characters called kanji.
The two syllabaries are relatively easy to learn with only 46 different characters
each, but there are several thousand, mostly quite complex kanji of which the
pronunciations or readings often depend on the textual context. Another severe
problem in Japanese is that the individual words are not separated by spaces so
that the reader has to guess the word boundaries.

All these difficulties make reading and translating Japanese sentences a cum-
bersome and tedious process. If the reader reaches an inscrutable text passage,
he must first guess where an unknown word starts and then consult a dictio-
nary. To look up the word in a bilingual dictionary is quite straightforward as
long as the reader is sure about the correct pronunciation, otherwise he has to
consult a kanji dictionary, which lists kanji and their readings categorized by
214 basic elements or radicals. The retrieval of this kanji information is again a
time-consuming task, especially because the radicals appear in different shapes
depending on the position within the kanji.

Online documents have the great advantage that they enable the use of
convenient tools, which assist the reader in comprehending the meaning of the
Japanese text. Today, there exist several Web sites that offer information about
kanji as well as English or German translations of Japanese words as pop-up
hints just by pointing with the mouse at a certain text position, e.g. POPjisho1

or Rikai2. Even if these tools are very useful, there are still often problems with
the correct segmentation and the retrieval of conjugated words.

In a previous project we developed a reading tool for the use within Microsoft
Word. We implemented this environment by using Amzi! Prolog, which provides
full Unicode support so that Japanese characters can be used freely in the Prolog
source code. Its application programming interface to Visual Basic enabled us to
embed the Prolog program into the text editor. The implemented functionality of
our reading tool included correct segmentation, the lookup of conjugated words,
and the addition of new word definitions. This application represented also an
evaluation of the scalability of Amzi! Prolog. We could achieve excellent perfor-
mance although we searched 6,355 entries extracted from the kanji dictionary
KANJIDIC3, 100,014 entries from the Japanese-English dictionary EDICT4, and
190,251 entries from the Japanese-German dictionary WaDokuJT5.

Another, less satisfying observation with using our reading environment was
that even with all this information available, it was still often not possible to
correctly reproduce the intended meaning of a Japanese text. The main rea-
son for this lies in the complexity of the translation task for the language pair
Japanese–German caused by the very different grammars of the two languages.
Whereas German grammar has a very specific system of declensions and con-
jugations to express number, gender, case, tense, mood, voice, etc., Japanese is
highly ambiguous regarding most of these features, e.g. there exist no articles
to indicate gender or definiteness, no declension to indicate number or case, and
only two tenses. The ambiguity is further increased dramatically by the exten-
sive use of ellipsis in Japanese. Therefore, a machine translation system requires
sophisticated disambiguation techniques [1, 17, 19, 20] and anaphoric resolution
strategies [12, 16, 18, 27].

1 http://www.popjisyo.com.
2 http://www.rikai.com/perl/Home.pl.
3 http://www.csse.monash.edu.au/~jwb/kanjidic.html.
4 http://www.csse.monash.edu.au/~jwb/edict.html.
5 http://www.wadoku.de.

Instead of a lengthy discussion of the state of the art of systems available
for Japanese translation, we show the results of an entertaining experiment in
Fig. 1. The figure lists the attempts of several machine translation programs to
translate a sentence about producing a parchment codex. We could only find one
program that also translates into German, all others translate only into English.
All the examples are taken from free online translation Web sites, except the
last entry, which was produced by a commercial product.

As can be seen, the results are far from satisfactory. All the systems are
certainly not suitable for fully automatic high quality machine translation. It is
sometimes even hard or impossible to grasp the exact meaning of a Japanese
sentence from the mutilated translations.

This unsatisfactory situation was the motivation for us to meet the challenge
of developing a high quality machine translation system from Japanese into
German. In our approach the system learns the transfer rules incrementally from
translation examples by using structural matching between the syntax trees. This
way the user can customize the system according to his personal preferences.
If the user is not satisfied with a translation result, he can simply correct the
translation and activate the adaptive learning module, which results in an update
of the translation rule base.

We have integrated our machine translation system with the previously de-
veloped reading tool to create the Personal Embedded Translation and Reading
Assistant (PETRA). PETRA’s main aim is to assist German-speaking language
students in reading and translating Japanese documents. PETRA offers the stu-
dents valuable information, which the students apply to solve the translation
task at hand. This encourages a bidirectional knowledge transfer so that the
students play an active role during their whole interaction with PETRA. There-
fore, studying Japanese becomes more interesting and entertaining.

The rest of the paper is organized as follows. In Sect. 2 we first provide a brief
discussion of related work. Then we give an overview of the system architecture
in Sect. 3 before we describe the technical details of the individual components
of our translation environment in Sect. 4, i.e. tokenization, parsing, learning,
transfer, and generation. Finally, we close the paper with concluding remarks
and an outlook on future work.

2 Related Work

Research on machine translation has a long tradition (for good overviews see
[7–9, 11, 22]). The state of the art in machine translation is that there are quite
good solutions for narrow application domains with a limited vocabulary and
concept space. For more general use only systems for very similar language pairs
promise to produce output that is acceptable or at least comprehensible. It is
the general opinion that fully automatic high quality translation without any
limitations on the subject and without any human intervention is far beyond
the scope of today’s machine translation technology, and there is serious doubt
that it will be ever possible in the future [10].

Japanese sentence:

これは、片面だけに字を書いて、同じ大きさに切りそろえたものを、
何枚も革のひもでとじた。

Roman transcription:

Kore wa, katamen dake ni ji o kaite, onaji ookisa ni kirisoraeta mono o,
nan mai mo kawa no himo de tojita.

Human translation into German:

Man hat es nur einseitig beschrieben und mehrere auf gleiche Größe
zurechtgeschnittene Blätter mit Lederriemen zusammengebunden.

Human translation into English:

It was written on only one side, and several sheets, trimmed to the same size,
were bound together with leather laces.

Machine translation by WorldLingo
 (www.worldlingo.com/products_services/worldlingo_translator.html):

Dieses, den Brief auf gerade die eine Seite, die schreibend, die sie in die
gleiche Größe trimmt, geschlossen vielen mit der Zeichenkette des Leders.

This, writing the letter on just the one side, those which it trims in the same size,
closed many with the string of the leather.

Machine translation by Excite
(www.excite.co.jp/world/url/):

This is leather many sheets about what wrote the character only to one side
and was cut to an even length in the same size. With a string It closed.

Machine translation by @nifty
(www.nifty.com/globalgate/):

This wrote the character only to one side and also closed many things cut to
an even length in the same size with the string of leather.

Machine translation by TransLand
(www.brother.co.jp/jp/honyaku/demo/index.html):

A letter was written only to the settlement side, and this じ how many sheets
of things which cut it into the same size and which was completed with the
leather string, too.

Machine translation by iTranslator
(itranslator.mendez.com/BGSX/BGSXeng_us-EntryPage.htm):

For this, as writing a character, I cut and leveled it for a similar size for one
side only, and any sheets are ひもでとじた of a leather.

Machine translation by 訳せ!!ゴマ
(ai2you.com/goma/):

This bound the one, that writes only to one side and evenly cut a/the
character to the same size with the strings of many sheets of leather.

Fig. 1. Example output of machine translation systems

This is true for transfer-based machine translation systems, which try to find
mappings between specific language pairs, and even more so for interlingua-based
machine translation systems aiming to find a language-independent representa-
tion that mediates among arbitrary languages. The latter are also often referred
to as knowledge-based machine translation systems [15, 23, 24] because in most
cases a semantic representation of the sentence meaning is used as interlingua.
The most ambitious initiative in this direction is probably UNL6; one recent
system limited to the translation of Japanese, Spanish, and Arabic texts into
English is GAZELLE [6].

It is very disappointing to have to notice that the translation quality has not
much improved in the last 10 years [28]. One main obstacle on the way to achiev-
ing better quality is seen in the fact that most of the current machine translation
systems are not able to learn from their mistakes. Most of the translation sys-
tems consist of large static rule bases with limited coverage, which have been
compiled manually with huge intellectual effort. All the valuable effort spent by
users on post-editing translation results is usually lost for future translations.

As a solution to this knowledge acquisition bottleneck, corpus-based machine
translation tries to learn the transfer knowledge automatically on the basis of
large bilingual corpora for the language pair (for a good survey and discussion
see [14]). Statistical machine translation [3, 4] basically translates word-for-word
and rearranges the words afterwards in the right order. Such systems have only
been of some success for very similar language pairs. For applying statistical
machine translation to Japanese several hybrid approaches have been proposed
that also make use of syntactic knowledge [29, 30].

The most prominent approach for the translation of Japanese has been
example-based machine translation [21, 26]. The basic idea is to collect trans-
lation examples for phrases and to use a best match algorithm to find the closest
example for a given source phrase. The translation of a complete sentence is
then built by combining the retrieved target phrases. The different approaches
vary in the representation of the translation examples. Whereas some approaches
store structured representations for all concrete examples [2], others explicitly
use variables to produce generalized templates [5, 13]. However, the main draw-
back remains that most of the representations of translation examples used in
example-based systems of reasonable size have to be manually crafted or at least
reviewed for correctness [25].

To summarize, we are faced with the dilemma that by relying on the available
approaches one can either spend several years of effort in creating hand-coded
transfer rules or a knowledge-based interlingua – ending up with a large knowl-
edge base that is difficult to maintain – or put one’s trust in statistical machine
translation based on huge bilingual corpora resulting in mediocre translations
caused by the use of inaccurate approximations. Example-based machine trans-
lation somehow offers a compromise: one can choose how much effort one wants
to invest in adding or correcting translation examples in order to improve the
translation quality.

6 www.undl.org.

3 System Architecture

In our approach we use translation examples provided by the user to learn the
transfer rules incrementally by using structural matching between the corre-
sponding syntax trees. There were several considerations that guided us towards
this design choice:

– as our aim was to develop a domain-independent machine translation system,
an interlingua-based approach was out of the question,

– we did not have the resources to manually build a large transfer rule base,
also a handcrafted rule base is in conflict with our need for flexible adapta-
tion,

– we had no huge bilingual corpus available for Japanese–German, also the
insufficient data quality of today’s large corpora would interfere with our
demand for high quality translations,

– even if we had an adequate corpus, the poor results achieved by statistical
techniques and the manual effort to compile translation templates of suffi-
cient quality for the use in example-based machine translation prohibit the
use of existing approaches,

– in our opinion there exists no “perfect” translation but only a preferred one
for a certain user, therefore we aim at full customization of our machine
translation system,

– the interactive improvement of translation results has also an important ped-
agogical benefit for the language students because it turns a boring transla-
tion task into an entertaining hands-on experience,

– the structured representation in the syntax trees proved to be an efficient
input to the learning algorithm, and we can display the trees to language
students as additional valuable information.

The operation of our machine translation system can be divided into a learn-
ing mode and a translation mode. In the learning mode (see Fig. 2) we derive
new transfer rules by using a Japanese–German sentence pair as input. Both
sentences are first analyzed by the tokenization modules, which produce the cor-
rect segmentations into word tokens associated with their part-of-speech (POS)
tags. Both token lists are then transformed into syntax trees by the parsing
modules. The syntax trees represent the input to the learning module, which
uses a structural matching algorithm to discover new transfer rules.

In the translation mode (see Fig. 3) we translate a Japanese sentence into
the corresponding German sentence by invoking the transfer module. It applies
the transfer rules stored in the rule base to transform the Japanese syntax tree
into the corresponding German syntax tree. Finally, the task of the generation
module is to produce the surface form of the German sentence as a character
string. Of course, the user can correct the translation result and activate the
learning mode to incrementally improve the quality of the transfer rule base.

In Sect. 4 we give a more detailed technical description of the individual
modules. We illustrate their mode of operation by using the sentence in Fig. 1
as a running example throughout the rest of this paper.

Tokenization
Japanese input

German input
Tokenization

Parsing

Japanese
token list

Parsing

German
token list

Japanese
lexicon

German
lexicon

Learning

German
syntax tree

Japanese
syntax tree

Transfer
rules

Japanese
grammar

 German
grammar

Fig. 2. Learning mode

Tokenization
Japanese input

German output
Generation

Parsing

Japanese
token list

Transfer

German
syntax tree

Japanese
lexicon

German
lexicon

Japanese
syntax tree

Transfer
rules

Japanese
grammar

Fig. 3. Translation mode

4 System Description

4.1 Tokenization

The task of the tokenization module is to analyze the surface string of a sentence,
to divide the string into words, to lemmatize the words (i.e. to reduce inflectional
and variant forms of a word to their base form), and to annotate the base forms
with POS tags. Figure 4 shows the token list for our example sentence. The
demonstrative pronoun “kore” is an anaphoric reference to “the parchment”,
which was introduced before in the Japanese text. The ta-form of a verb indicates
English past tense (expressed as perfect tense in German), whereas the te-form is
the connective form. The expression “nan mai mo” (literally “what thin objects
also”) means “several sheets” in this context.

Japanese sentence:
これは、片面だけに字を書いて、同じ大きさに切りそろえた
ものを、何枚も革のひもでとじた。

Segmentation:
これ|は|、|片面|だけ|に|字|を|書いて|、|同じ|大きさ|に|切りそろえた|
もの|を|、|何|枚|も|革|の|ひも|で|とじた|。

Roman transcription:
Kore wa, katamen dake ni ji o kaite, onaji ookisa ni kirisoraeta
mono o, nan mai mo kawa no himo de tojita.

これ/dpr demonstrative pronoun – kore – it
は/par particle – wa – (topic indicator)
、/cma comma
片面/nou noun – katamen – one side
だけ/suf suffix – dake – only
に/par particle – ni – on
字/nou noun – ji – character
を/par particle – o – (direct object indicator)
書く/vte verb te-form – kaku – to write
、/cma comma
同じ/ano adjectival noun – onaji – same
大きさ/nou noun – ookisa – size
に/par particle – ni – to
切りそろえる/vta verb ta-form – kirisoraeru – to trim
もの/nou noun – mono – thing
を/par particle – o – (direct object indicator)
、/cma comma
何/ipr interrogative pronoun – nan – what
枚/cou counter – mai – thin object
も/par particle – mo – also
革/nou noun – kawa – leather
の/par particle – no – (attribution indicator)
ひも/nou noun – mono – lace
で/par particle – de – with
とじる/vta verb ta-form – tojiru – to bind together
。/per period

Fig. 4. Example of Japanese token list

Since Japanese writing does not use word delimiters (such as space char-
acters), we have to represent a Japanese sentence as one single atom during
segmentation. We have to find and remove the correct word token that is the
left subatom of the sentence:

segment(Sentence, [BaseForm/POS|TokenList]) :-
find_token(Sentence, BaseForm, WordLength, POS),
remove_token(Sentence, WordLength, TokenList).

To remove the word token from the sentence we use the information about
the word length to calculate the subatom that has to be extracted. Then we
continue recursively with the retrieval of the next word token. The recursion
ends when the word length equals the length of the remaining partial sentence:

remove_token(Sentence, WordLength, []) :-
atom_length(Sentence, WordLength).

remove_token(Sentence, WordLength, TokenList) :-
atom_length(Sentence, SentenceLength),
StartPos is 1 + WordLength,
RestLength is SentenceLength - WordLength,
sub_atom(String, StartPos, RestLength, RestSentence),
segment(RestSentence, TokenList).

For the identification of the correct word token we retrieve all words from the
Japanese lexicon that are left subatoms of the sentence. From the list of word
candidates we choose the correct word by applying some disambiguation rules.
The default choice is the longest matching sequence:

find_token(Sentence, BaseForm, WordLength, POS) :-
findall(W:B:P, find_word(Sentence, W, B, P), Candidates),
select_word(Candidates, BaseForm, WordLength, POS).

The retrieval of a word from the Japanese lexicon is performed by matching
it with the beginning of the sentence:

find_word(Sentence, Word, Word, POS) :-
jap_lex_entry(Word, POS),
atom_length(Word, WordLength),
sub_atom(Sentence, 1, WordLength, Word).

Since Japanese has quite a complex system of conjugations for verbs and
adjectives, we also have to search for all concatenations of word stems and end-
ings for these two word classes. The base form of conjugated words is computed
by concatenating the stem and the correct base form ending depending on the
conjugation class:

find_word(Sentence, Word, BaseForm, POS) :-
jap_lex_verbadj(Stem, ConjClass),
atom_length(Stem, StemLength),
sub_atom(Sentence, 1, StemLength, Stem),
jap_ending(ConjClass, Ending, POS),
atom_length(Ending, EndLength),
StartPos is StemLength + 1,
sub_atom(Sentence, StartPos, EndLength, Ending),
atom_concat(Stem, Ending, Word),
jap_baseform_ending(ConjClass, BaseFormEnding),
atom_concat(Stem, BaseFormEnding, BaseForm).

The tokenization of Japanese sentences requires a lot of processing power,
but is solved by Amzi! Prolog even for large lexicons without any problems.

Compared to this, tokenization of German sentences is quite a trivial task.
It can be solved by simply using the predicate string tokens to transform the
sentence into a list of tokens, which can then be lemmatized separately. Figure 5
shows the German token list for our translation example. Some ambiguities re-
garding syntactic features are resolved later during parsing. For example, for the
noun “Lederriemen” plural and singular forms are identical so that the decision
about the correct number is left to the parsing module. Within the PETRA
environment, the language students can consult the token lists to offer them
valuable information at the word level.

German sentence:
Man hat es nur einseitig beschrieben und mehrere auf gleiche Größe
zurechtgeschnittene Blätter mit Lederriemen zusammengebunden.

man/npr indefinite pronoun – one
haben/apr auxiliary verb present tense – to have
es/pep personal pronoun – it
nur/adv adverb – only
einseitig/apo adjective positive comparison – on one side
beschreiben/vpp verb past participle – to write
und/con conjunction – and
mehrere/npr indefinite pronoun – several
auf/prp preposition – to
gleich/apo adjective positive comparison – same
Größe/nsg noun singular – size
zurechtschneiden/vap verb attributive past participle – to trim
Blatt/npl noun plural – sheet
mit/prp preposition – with
Lederriemen/nsp noun singular or plural – leather lace
zusammenbinden/vpp verb past participle – to bind together
. /per period

Fig. 5. Example of German token list

4.2 Parsing

The parsing modules compute the syntactic structure of sentences from their
token lists. One interesting property of Japanese grammar is that it uses post-
positions instead of prepositions and that the predicate is at the end of the
sentence. Therefore, it is easier to parse a Japanese sentence from right to left.
Figure 6 shows the syntax tree for our example sentence. As can be seen, the
POS tag for conjugated word forms is indicated as feature hwf (head word form).

hew ver とじる
hwf vta
pob hew nou ひも
 php par で
 anp hew nou 革
dob hew nou もの
 amo hew cou 枚
 php par も
 qua ipr 何
 avp hew ver 切りそろえる
 hwf vta
 pob hew nou 大きさ
 php par に
 aap hew ano 同じ
pcl hew ver 書く
 hwf vte
 dob hew nou 字
 adp hew nou 片面
 php par に
 asf suf だけ
 sub dpr これ

head word – verb – tojiru – to bind together
head word form – verb ta-form
postpositional object – head word – noun – himo – lace
phrase particle – particle – de – with
attributive noun phrase – head word – noun – kawa – leather
direct object – head word – noun – mono – thing
amount – head word – counter – mai – thin object
phrase particle – particle – mo – also
quantity – interrogative pronoun – nan – what
attributive verb phrase – head word – verb – kirisoraeru – to trim
head word form – verb ta-form
postpositional object – head word – noun – ookisa – size
phrase particle – particle – ni – to
attributive adjective phrase – head word – adjectival noun – onaji – same
preceding clause – head word – verb – kaku – to write
head word form – verb te-form
direct object – head word – noun – ji – character
adverbial phrase – head word – noun – katamen – one side
phrase particle – particle – ni – on
attributive suffix – suffix – dake – only
subject – demonstrative pronoun – kore – it

Fig. 6. Example of Japanese syntax tree

We use the Definite Clause Grammar (DCG) preprocessor of Amzi! Prolog
to write the grammar rules. Instead of using a fixed structure to represent the
syntax tree, we opted for a more flexible and robust representation by using sets
modeled as Prolog lists. A sentence is a set of constituents, and each constituent
is a compound term of arity 1 with the constituent name as principal functor
and the argument being either

– a simple constituent (feature value or word/word class) or
– a complex constituent (set of subconstituents).

This flexible representation has the advantage that it is compact, because
empty optional constituents are not stored explicitly, and is not affected by the
ordering of the different subconstituents. The latter is important for a robust
and effective realization of the transfer module so that the transfer rules can
change the syntax tree without having to consider any sequencing information.

During parsing we collect arguments for all possible subconstituents and then
eliminate empty subconstituents by using the predicate compress to remove all
list entries with argument nil.

In the following we show some (strongly simplified) grammar rules for a
noun phrase with an optional attributive suffix and an optional attributive noun
phrase (we use the Roman transcription of the particle “no” just in this example):

noun_phrase(NP) --> attr_suffix(Asf), [N/nou], attr_np(Anp),
{compress([hew(N), asf(Asf), anp(Anp)], Np)}.

attr_suffix(Asf) --> [Asf/suf].
attr_suffix(nil) --> [].
attr_np(Anp) --> [no/par], noun_phrase(Anp).
attr_np(nil) --> [].

To facilitate the matching between Japanese and German syntax trees (see
Sect. 4.3) we tried to align the German grammar as best as possible with the
Japanese one. Therefore, we also parse German sentences from right to left.
For that purpose we have to perform a preprocessing step on the token list in
which we shift all prepositions to the end of prepositional phrases so that they are
parsed first. Figure 7 shows the German syntax tree for our translation example.
As mentioned in Sect. 4.1 we resolve ambiguous feature values during parsing,
e.g. now we can assign the correct number plural to “Lederriemen”.

hew ver zusammenbinden
ten per
pob hew nou Lederriemen
 php prp mit
 det nod
 num plu
dob hew nou Blatt
 det nod
 num plu
 aip npr mehrere
 avp hew ver zurechtschneiden
 ten per
 pob hew nou Größe
 php prp auf
 det nod
 num sng
 aap hew adj gleich
 com pos
sub npr man
pcl hew ver beschreiben
 ten per
 php con und
 pap hew adj einseitig
 com pos
 aav adv nur
 dob pep es

head word – verb – to bind together
tense – present perfect
prepositional object – head word – noun – leather lace
phrase particle – preposition – with
determiner type – no determiner
number – plural
direct object – head word – noun – sheet
determiner type – no determiner
number – plural
attributive indefinite pronoun – indefinite pronoun – several
attributive verb phrase – head word – verb – to trim
tense – present perfect
prepositional object – head word – noun – size
phrase particle – preposition – to
determiner type – no determiner
number – singular
attributive adjective phrase – head word – adjective – same
comparison – positive
subject – indefinite pronoun – one
preceding clause – head word – verb – to write
tense – present perfect
phrase particle – conjunction – and
predicative adjective phrase – head word – adjective – on one side
comparison – positive
attributive adverb – adverb – only
direct object – personal pronoun – it

Fig. 7. Example of German syntax tree

For displaying the parsing trees to the user we have implemented one generic
display module for both Japanese and German syntax trees, which is also able
to deal with mixed representations caused by missing coverage of the transfer
rule base. This way we can show the limitations of the translation system to the
language student who can easily fix them with an update of the rule base.

4.3 Learning

The learning module traverses the Japanese and German syntax trees and derives
new transfer rules, which are added to the rule base. For that purpose we have
implemented generic predicates for the simultaneous navigation in two complex
constituents. We start to search for new rules at the sentence level before we look
for corresponding constituents to continue the search for finer-grained transfer
rules recursively. We always perform a complete traversal, i.e. new rules are
learnt even if they are not required for the translation of the Japanese sentence
in order to extract as much information as possible from the example.

We distinguish between four different types of transfer rules for simple con-
stituents (SC) and complex constituents (CC). The transfer rules are stored as
facts in Prolog:

– tr sc(C1,C2,A1,A2): changes the SC C1(A1) to C2(A2),
– tr asc(A1,A2): changes the argument of an SC from A1 to A2,
– tr cc(C1,C2,Hew,Req1,Req2): changes the CC C1(A1), A1=Req1∪Opt, to

C2(A2), A2=Req2∪Opt, if hew(Hew)∈A1,
– tr acc(Hew,Req1,Req2): changes the argument of a CC from A1=Req1∪Add,

to A2=Req2∪Add if hew(Hew)∈A1.
Hew serves as index for the fast retrieval of matching rules and the reduction

of the number of rules that have to be analyzed. For transfer rules of type
tr acc any additional subconstituents are allowed in Add, whereas Opt in rules of
type tr cc can only contain certain optional subconstituents. Transfer rules for
complex constituents can use shared variables for unification in Req1 and Req2.
In addition to those four generic rule types, we also use several more specific
types, e.g. for the correct translation of conjunctions and syntactic features.

Figure 8 shows the transfer rules that we can learn from our translation
example. We omit the default rules for deriving the perfect tense from the head
word form vta, for deriving the conjunction “und” from the head word form
vte, and for inserting the indefinite pronoun “man” for the missing subject. The
suffix “dake” is an optional subconstituent, which can extend the set of required
subconstituents in Rule 8. Rule 1 and Rule 4 are two examples of transfer rules
that use shared variables for unification.

The principal steps for performing the structural matching between two com-
plex constituents are:

– we either derive transfer rules of type tr asc for the head word or transfer
rules of type tr acc for head/modifier combinations,

– we derive transfer rules of type tr sc or tr cc to translate a Japanese sub-
constituent into a different German subconstituent,

– we search for corresponding subconstituents and apply the matching recur-
sively to those subconstituents,

– we derive transfer rules for conjunctions and syntactic features.

Each rule is validated against the existing rules to resolve all conflicts arising
from adding the new rule to the rule base. The resolution is achieved by making
the conflicting rules more specific.

hew ver とじる
hwf vta
pob hew nou ひも
 php par で
 anp hew nou 革
dob hew nou もの
 amo hew cou 枚
 php par も
 qua ipr 何
 avp hew ver 切りそろえる
 hwf vta
 pob hew nou 大きさ
 php par に
 aap hew ano 同じ
pcl hew ver 書く
 hwf vte
 dob hew nou 字
 adp hew nou 片面
 php par に
 asf suf だけ
 sub dpr これ

hew ver zusammenbinden
ten per
pob hew nou Lederriemen
 php prp mit
 det nod
 num plu
dob hew nou Blatt
 det nod
 num plu
 aip npr mehrere
 avp hew ver zurechtschneiden
 ten per
 pob hew nou Größe
 php prp auf
 det nod
 num sng
 aap hew adj gleich
 com pos
sub npr man
pcl hew ver beschreiben
 ten per
 php con und
 pap hew adj einseitig
 com pos
 aav adv nur
 dob pep es

1. tr_acc(とじる/ver, [hew(とじる/ver), pob([php(で/par)|X])],
[hew(zusammenbinden/ver), pob([php(mit/prp), det(nod), num(plu)|X])]).

2. tr_acc(ひも/nou, [hew(ひも/nou), anp([hew(革/nou)])], [hew('Lederriemen'/nou)]).
3. tr_acc(もの/nou, [hew(もの/nou), amo([hew(枚/cou), qua(何/ipr), php(も/par)])],

[hew('Blatt'/nou), num(plu), det(nod), aip(mehrere/npr)]).
4. tr_acc(切りそろえる/ver, [hew(切りそろえる/ver), pob([php(に/par)|X])],

[hew(zurechtschneiden/ver), pob([php(auf/prp), det(nod), num(sng)|X])]).
5. tr_asc(大きさ/nou, 'Größe'/nou).
6. tr_asc(同じ/ano, gleich/adj).
7. tr_acc(書く/ver, [hew(書く/ver), dob([hew(字/nou)])], [hew(beschreiben/ver)]).
8. tr_cc(adp, pap, 片面/nou, [php(に/par), hew(片面/nou)], [hew(einseitig/adj), com(pos)]).
9. tr_sc(asf, aav, だけ/suf, nur/adv).

10. tr_sc(sub, dob, これ/dpr, es/pep).

Rule 1

Rule 2

Rule 3

Rule 5
Rule 6

Rule 4

Rule 7

Rule 8

Rule 10
Rule 9

Fig. 8. Example of learning transfer rules

4.4 Transfer

The transfer module traverses the Japanese syntax tree and searches for transfer
rules that can be applied. The flexible definition of the rules enables a robust
processing of the syntax tree. One rule only changes certain parts of a con-
stituent into the German equivalent, other parts are left unchanged to be trans-
formed later on. Thus, our transfer algorithm deals efficiently with a mixture of
Japanese–German, which gradually turns into a correct German syntax tree.

To translate the argument A1 of a constituent C(A1) into A2 we have defined
the predicate tf arg(C, A1, A2). For simple constituents we just apply transfer
rules of type tr asc, for complex constituents we first apply transfer rules of
type tr acc (predicate tf acc(A1, A2)) as well as rules for conjunctions and

syntactic features before we recursively call the predicate tf sub(Csub, A1,
A2) for the translation of each subconstituent Csub(Asub):

tf_sub(Csub, A1, A2) :-
find_subconstituent(Csub, A1, Asub),
tf_sub_arg(Csub, Asub, A1, A2).

tf_sub(_, A, A).

The predicate find subconstituent retrieves the argument Asub for the
subconstituent Csub(Asub). It fails if no subconstituent with constituent name
Csub is included in A1. The predicate tf sub arg first tries to apply rules of type
tr sc and tr cc to replace the Japanese subconstituent with a different German
subconstituent before it recursively calls the predicate tf arg to translate the
argument Asub:

tf_sub_arg(Csub, Asub, A1, A2) :-
tr_sc(Csub, Csub2, Asub, Asub2),
replace_subconstituent(Csub, Csub2, A1, Asub2, A2).

tf_sub_arg(Csub, Asub, A1, A2) :-
tf_cc(Csub, Csub2, Asub, Asub2),
replace_subconstituent(Csub, Csub2, A1, Asub2, A2).

tf_sub_arg(Csub, Asub, A1, A2) :-
tf_arg(Csub, Asub, Asub2),
Asub \== Asub2,
replace_arg_subconstituent(Csub, A1, Asub2, A2).

tf_sub_arg(_, _, A, A).

To apply transfer rules of type tr acc we retrieve the head word from A1 as
index for the access to matching transfer rules and then call split to unify the
subconstituents in Req1 with the corresponding subconstituents in A1:

tf_acc(A1, A2) :-
find_subconstituent(hew, A1, Hew),
tr_acc(Hew, Req1, Req2),
split(A1, Req1, Add),
append(Req2, Add, A2).

tf_acc(A, A).

The predicate split takes every subconstituent in Req1, retrieves the corre-
sponding subconstituent in A1 and unifies the two structures. This way we can
guarantee that the unification is not affected by the order of the subconstituents
in Req1 and A1. As a byproduct of this sorting procedure, split returns the set
of additional subconstituents Add=A1\Req1, i.e. all subconstituents in A1 that
were not retrieved. Figure 9 shows an example of the application of a transfer
rule of type tr acc with a shared variable for unification (Rule 4 in Fig. 8). The
predicate tf cc for the application of transfer rules of type tr cc is defined in
a similar way.

tr_acc(切りそろえる/ver,
[hew(切りそろえる/ver), pob([php(に/par)|X])],
[hew(zurechtschneiden/ver), pob([php(auf/prp), det(nod), num(sng)|X])]).

Req1 = [hew(切りそろえる/ver), pob([php(に/par)|X])]
Req2 = [hew(zurechtschneiden/ver), pob([php(auf/prp), det(nod), num(sng)|X])]
A1 = [pob([php(に/par), hew(大きさ/nou), aap([hew(同じ/ano)])]),
 hwf(vta), hew(切りそろえる/ver)]
Req1’ = [hew(切りそろえる/ver), pob([php(に/par),
 hew(大きさ/nou), aap([hew(同じ/ano)])])]
Add = [hwf(vta)]
Req2’ = [hew(zurechtschneiden/ver), pob([php(auf/prp), det(nod), num(sng),
 hew(大きさ/nou), aap([hew(同じ/ano)])])]
A2 = [hew(zurechtschneiden/ver), pob([php(auf/prp), det(nod), num(sng),
 hew(大きさ/nou), aap([hew(同じ/ano)])]), hwf(vta)]

 Fig. 9. Example of the application of a transfer rule

4.5 Generation

To generate the surface form of a German sentence, we traverse the syntax tree in
a top-down fashion. For each complex constituent we transform its argument into
a list of surface strings, which is computed recursively from its subconstituents
as nested list and flattened afterwards. The syntactic features to compute the
correct determiners and the declensions and conjugations of German words are
partly included in the German syntax tree, e.g. number or tense, and partly
retrieved from the German lexicon, e.g. gender. In the following we show the
(strongly simplified) predicate to generate the list of surface strings for a noun
phrase (the predicate find optional subconstituent returns nil if it cannot
find the subconstituent):

generate_np(nil, _, []).
generate_np(NP, Case, StringList) :-

find_subconstituent(hew, NP, Hew/nou),
find_subconstituent(det, NP, Det),
find_subconstituent(num, NP, Num),
ger_lex_noun(Hew, Gender, DeclClass),
generate_det(Det, Num, Case, Gender, Determiner),
find_optional_subconstituent(aap, NP, Aap),
generate_aap(Aap, Det, Num, Case, Gender, Adjective),
generate_hew(Hew, Num, Case, DeclClass, Noun),
flatten([Determiner, Adjective, Noun], StringList).

generate_np(_, _, []).

After the complete traversal of the syntax tree, the resulting flat list of surface
strings is transformed into a single character string by inserting spaces where
appropriate.

Finally, we provide some means for the resolution of simple intersentential
anaphora by storing candidates for antecedents in previous sentences, e.g. to
compute the correct surface form of a personal pronoun.

5 Conclusion

In this paper we have presented a customizable machine translation system,
which incrementally learns transfer rules from translation examples provided by
a user. We have completed the implementation of the translation system and the
integration into the language learning environment PETRA. We are now in the
process of filling the transfer rule base with the help of several language students
from the University of Vienna. So far, the feedback from the students has been
very positive. For some, PETRA has already become an invaluable companion
throughout their language studies.

Whereas at the moment language students are our main target audience,
we hope to reach a level of linguistic competence in the near future that will
make it also possible for non-specialist users to benefit from our translation
environment. In addition to constantly extending the coverage of our machine
translation system, future work will also concentrate on a thorough evaluation
of the system according to the FEMTI7 framework.

References

1. Bond, F., Ogura, K., Kawaoka, T.: Noun phrase reference in Japanese-to-English
machine translation. Proceedings of the 7th International Conference on Theoret-
ical and Methodological Issues in Machine Translation, Leuven, Belgium (1995)

2. Brockett, C. et al.: English-Japanese example-based machine translation using ab-
stract linguistic representations. Proceedings of the COLING-2002 Workshop on
Machine Translation in Asia, Taipei, Taiwan (2002)

3. Brown, P.: A statistical approach to machine translation. Computational Linguis-
tics 16(2) (1990) 79–85

4. Brown, P. et al.: The mathematics of statistical machine translation: Parameter
estimation. Computational Linguistics 19(2) (1993) 263–311

5. Furuse, O., Iida, H.: Cooperation between transfer and analysis in example-based
framework. Proceedings of the 14th International Conference on Computational
Linguistics, Nantes, France (1992) 645–651

6. Germann, U.: Making semantic interpretation parser-independent. Proceedings of
the 3rd AMTA Conference, Longhorne, USA (1998) 286–299

7. Hutchins, J.: Machine Translation: Past, Present, Future. Ellis Horwood (1986)
8. Hutchins, J.: Machine translation over 50 years. Histoire epistémologie langage

23(1) (2001) 7–31
9. Hutchins, J.: Has machine translation improved? Some historical comparisons. Pro-

ceedings of the 9th MT Summit, New Orleans, USA (2003) 181–188
10. Hutchins, J.: Machine translation and computer-based translation tools: What’s

available and how it’s used. In: Bravo, J. M., ed.: A New Spectrum of Translation
Studies. University of Valladolid (2003)

11. Hutchins, J., Somers, H.: An Introduction to Machine Translation. Academic Press
(1992)

12. Isozaki, H., Hirao, T.: Japanese zero pronoun resolution based on ranking rules and
machine learning. Proceedings of the Conference on Empirical Methods in Natural
Language Processing, Sapporo, Japan (2003) 184–191

7 www.isi.edu/natural-language/mteval/.

13. Kaji, H., Kida, Y., Morimoto, Y.: Learning translation examples from bilingual
text. Proceedings of the 14th International Conference on Computational Linguis-
tics, Nantes, France (1992) 672–678

14. Knight, K.: Automatic knowledge acquisition for machine translation. AI Magazine
18(4) (1997) 81–96

15. Leavitt, J. R. R., Lonsdale, D. W., Franz, A. M.: A reasoned interlingua for
knowledge-based machine translation. Proceedings of the 10th Canadian Confer-
ence on Artificial Intelligence, Banff, Canada (1994)

16. Murata, M., Isahara, H., Nagao, M.: Pronoun resolution in Japanese sentences
using surface expressions and examples. Proceedings of the ACL-99 Workshop on
Coreference and its Applications, Maryland, USA (1999)

17. Murata, M., Nagao, M.: Determination of refential property and number of nouns
in Japanese sentences for machine translation into English. Proceedings of the 5th
International Conference on Theoretical and Methodological Issues in Machine
Translation, Kyoto, Japan (1993) 218–225

18. Murata, M., Nagao, M.: Resolution of verb ellipsis in Japanese sentence using
surface expressions and examples. Proceedings of the Natural Language Processing
Pacific Rim Symposium, Phuket, Thailand (1997) 75–80

19. Murata, M. et al.: An example-based approach to Japanese-to-English translation
of tense, aspect, and modality. Proceedings of the 8th International Conference
on Theoretical and Methodological Issues in Machine Translation, Chester, United
Kingdom (1999) 66–76

20. Murata, M. et al.: A machine-learning approach to estimating the referential prop-
erties of Japanese noun phrases. Proceedings of the CICLing-2001 Conference on
Intelligent Text Processing and Computational Linguistics, Mexico City, Mexico
(2001)

21. Nagao, M.: A framework of a mechanical translation between Japanese and English
by analogy principle. In: Elithorn, A., Banerji, R., eds.: Artificial and Human
Intelligence. NATO Publications (1984)

22. Newton, J., ed.: Computers in translation: A practical appraisal. Routledge (1992)
23. Nirenberg, S. et al.: Machine Translation: A Knowledge-Based Approach. Morgan

Kaufmann Publishers (1992)
24. Onyshkevych, B., Nirenburg, S.: A lexicon for knowledge-based MT. Machine

Translation 10(1-2) (1995) 5–57
25. Richardson, S. et al.: Overcoming the customization bottleneck using example-

based MT. Proceedings of the ACL Workshop on Data-driven Machine Translation,
Toulouse, France (2001) 9–16

26. Sato, S.: Example-Based Machine Translation. PhD thesis, Kyoto University (1991)
27. Seki, K., Atsushi, F., Ishikawa, T.: A probabilistic method for analyzing Japanese

anaphora integrating zero pronoun detection and resolution. Proceedings of the
19th International Conference on Computational Linguistics, Taipei, Taiwan
(2002) 911–917

28. Somers, H., ed.: Computers and Translation: A Translator’s Guide. John Benjamins
(2003)

29. Watanabe, T., Imamura, K., Sumita, E.: Statistical machine translation based on
hierarchical phrase alignment. Proceedings of the 9th International Conference on
Theoretical and Methodological Issues in Machine Translation, Keihanna, Japan
(2002) 188–198

30. Yamada, K.: A Syntax-Based Statistical Translation Model. PhD thesis, University
of Southern California (2002)

